Publikation:

Domain walls and chaos in the disordered SOS model

Lade...
Vorschaubild

Dateien

0905.4816v1.pdf
0905.4816v1.pdfGröße: 1.07 MBDownloads: 153

Datum

2009

Autor:innen

Schwarz, Karsten
Schehr, Grégory
Rieger, Heiko

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Statistical Mechanics: Theory and Experiment. 2009, 2009(08), P08022. ISSN 1742-5468. Available under: doi: 10.1088/1742-5468/2009/08/P08022

Zusammenfassung

Domain walls, optimal droplets and disorder chaos at zero temperature are studied numerically for the solid-on-solid model on a random substrate. It is shown that the ensemble of random curves represented by the domain walls obeys Schramm s left passage formula with κ = 4 whereas their fractal dimension is ds = 1.25, and therefore their behavior cannot be described as showing Schramm (or stochastic) Loewner evolution (SLE). Optimal droplets with a lateral size between L and 2L have the same fractal dimension as domain walls but an energy that saturates at a value of order O(1) for L → ∞ such that arbitrarily large excitations exist which cost only a small amount of energy. Finally it is demonstrated that the sensitivity of the ground state to small changes of order δ in the disorder is subtle: beyond a crossover length scale Lδ ∼ δ−1 the correlations of the perturbed ground state with the unperturbed ground state, rescaled using the roughness, are suppressed and approach zero logarithmically.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHWARZ, Karsten, Andreas KARRENBAUER, Grégory SCHEHR, Heiko RIEGER, 2009. Domain walls and chaos in the disordered SOS model. In: Journal of Statistical Mechanics: Theory and Experiment. 2009, 2009(08), P08022. ISSN 1742-5468. Available under: doi: 10.1088/1742-5468/2009/08/P08022
BibTex
@article{Schwarz2009Domai-6066,
  year={2009},
  doi={10.1088/1742-5468/2009/08/P08022},
  title={Domain walls and chaos in the disordered SOS model},
  number={08},
  volume={2009},
  issn={1742-5468},
  journal={Journal of Statistical Mechanics: Theory and Experiment},
  author={Schwarz, Karsten and Karrenbauer, Andreas and Schehr, Grégory and Rieger, Heiko},
  note={Also publ. in: arXiv:0905.4816v1  [cond-mat.dis-nn] Article Number: P08022}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6066">
    <dcterms:title>Domain walls and chaos in the disordered SOS model</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6066/1/0905.4816v1.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:08Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:bibliographicCitation>First publ. in: Journal of statistical mechanics ;  (2009). - P08022</dcterms:bibliographicCitation>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Karrenbauer, Andreas</dc:creator>
    <dc:creator>Schehr, Grégory</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:08Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6066/1/0905.4816v1.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:abstract xml:lang="eng">Domain walls, optimal droplets and disorder chaos at zero temperature are studied numerically for the solid-on-solid model on a random substrate. It is shown that the ensemble of random curves represented by the domain walls obeys Schramm s left passage formula with κ = 4 whereas their fractal dimension is ds = 1.25, and therefore their behavior cannot be described as showing  Schramm  (or stochastic) Loewner evolution  (SLE). Optimal droplets with a lateral size between L and 2L have the same fractal dimension as domain walls but an energy that saturates at a value of order O(1) for L → ∞ such that arbitrarily large excitations exist which cost only a small amount of energy. Finally it is demonstrated that the sensitivity of the ground state to small changes of order δ in the disorder is subtle: beyond a crossover length scale Lδ ∼ δ−1 the correlations of the perturbed ground state with the unperturbed ground state, rescaled using the roughness, are suppressed and approach zero logarithmically.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Rieger, Heiko</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6066"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Schwarz, Karsten</dc:contributor>
    <dcterms:issued>2009</dcterms:issued>
    <dc:contributor>Karrenbauer, Andreas</dc:contributor>
    <dc:creator>Rieger, Heiko</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Schehr, Grégory</dc:contributor>
    <dc:creator>Schwarz, Karsten</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Also publ. in: arXiv:0905.4816v1 [cond-mat.dis-nn]
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen