Publikation: Domain walls and chaos in the disordered SOS model
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Domain walls, optimal droplets and disorder chaos at zero temperature are studied numerically for the solid-on-solid model on a random substrate. It is shown that the ensemble of random curves represented by the domain walls obeys Schramm s left passage formula with κ = 4 whereas their fractal dimension is ds = 1.25, and therefore their behavior cannot be described as showing Schramm (or stochastic) Loewner evolution (SLE). Optimal droplets with a lateral size between L and 2L have the same fractal dimension as domain walls but an energy that saturates at a value of order O(1) for L → ∞ such that arbitrarily large excitations exist which cost only a small amount of energy. Finally it is demonstrated that the sensitivity of the ground state to small changes of order δ in the disorder is subtle: beyond a crossover length scale Lδ ∼ δ−1 the correlations of the perturbed ground state with the unperturbed ground state, rescaled using the roughness, are suppressed and approach zero logarithmically.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHWARZ, Karsten, Andreas KARRENBAUER, Grégory SCHEHR, Heiko RIEGER, 2009. Domain walls and chaos in the disordered SOS model. In: Journal of Statistical Mechanics: Theory and Experiment. 2009, 2009(08), P08022. ISSN 1742-5468. Available under: doi: 10.1088/1742-5468/2009/08/P08022BibTex
@article{Schwarz2009Domai-6066, year={2009}, doi={10.1088/1742-5468/2009/08/P08022}, title={Domain walls and chaos in the disordered SOS model}, number={08}, volume={2009}, issn={1742-5468}, journal={Journal of Statistical Mechanics: Theory and Experiment}, author={Schwarz, Karsten and Karrenbauer, Andreas and Schehr, Grégory and Rieger, Heiko}, note={Also publ. in: arXiv:0905.4816v1 [cond-mat.dis-nn] Article Number: P08022} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6066"> <dcterms:title>Domain walls and chaos in the disordered SOS model</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6066/1/0905.4816v1.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:08Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>First publ. in: Journal of statistical mechanics ; (2009). - P08022</dcterms:bibliographicCitation> <dc:format>application/pdf</dc:format> <dc:creator>Karrenbauer, Andreas</dc:creator> <dc:creator>Schehr, Grégory</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:08Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6066/1/0905.4816v1.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:abstract xml:lang="eng">Domain walls, optimal droplets and disorder chaos at zero temperature are studied numerically for the solid-on-solid model on a random substrate. It is shown that the ensemble of random curves represented by the domain walls obeys Schramm s left passage formula with κ = 4 whereas their fractal dimension is ds = 1.25, and therefore their behavior cannot be described as showing Schramm (or stochastic) Loewner evolution (SLE). Optimal droplets with a lateral size between L and 2L have the same fractal dimension as domain walls but an energy that saturates at a value of order O(1) for L → ∞ such that arbitrarily large excitations exist which cost only a small amount of energy. Finally it is demonstrated that the sensitivity of the ground state to small changes of order δ in the disorder is subtle: beyond a crossover length scale Lδ ∼ δ−1 the correlations of the perturbed ground state with the unperturbed ground state, rescaled using the roughness, are suppressed and approach zero logarithmically.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Rieger, Heiko</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6066"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Schwarz, Karsten</dc:contributor> <dcterms:issued>2009</dcterms:issued> <dc:contributor>Karrenbauer, Andreas</dc:contributor> <dc:creator>Rieger, Heiko</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Schehr, Grégory</dc:contributor> <dc:creator>Schwarz, Karsten</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>