Publikation: SAHARA : Memory Footprint Reduction of Cloud Databases with Automated Table Partitioning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Enterprises increasingly move their databases into the cloud. As a result, database-as-a-service providers are challenged to meet the performance guarantees assured in service-level agreements (SLAs) while keeping hardware costs as low as possible. Being cost-effective is particularly crucial for cloud databases where the provisioned amount of DRAM dominates the hardware costs. A way to decrease the memory footprint is to leverage access skew in the workload by moving rarely accessed cold data to cheaper storage layers and retaining only frequently accessed hot data in main memory. In this paper, we present SAHARA, an advisor that proposes a table partitioning for column stores with minimal memory footprint while still adhering to all performance SLAs. SAHARA collects lightweight workload statistics, classifies data as hot and cold, and calculates optimal or near-optimal range partitioning layouts with low optimization time using a novel cost model. We integrated SAHARA into a commercial cloud database and show in our experiments for real-world and synthetic benchmarks a memory footprint reduction of 2.5× while still fulfilling all performance SLAs provided by the customer or advertised by the DBaaS provider.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BRENDLE, Michael, Nick WEBER, Mahammad VALIYEV, Norman MAY, Robert SCHULZE, Alexander BÖHM, Guido MOERKOTTE, Michael GROSSNIKLAUS, 2022. SAHARA : Memory Footprint Reduction of Cloud Databases with Automated Table Partitioning. 25th International Conference on Extending Database Technology (EDBT 2022). Edinburgh, UK, 29. März 2022 - 1. Apr. 2022. In: Proceedings 25th International Conference on Extending Database Technology (EDBT 2022). Konstanz: University of Konstanz, 2022, pp. 13-26. Advances in Database Technology. 25,1. eISSN 2367-2005. ISBN 978-3-89318-086-8. Available under: doi: 10.5441/002/edbt.2022.02BibTex
@inproceedings{Brendle2022SAHAR-59633, year={2022}, doi={10.5441/002/edbt.2022.02}, title={SAHARA : Memory Footprint Reduction of Cloud Databases with Automated Table Partitioning}, number={25,1}, isbn={978-3-89318-086-8}, publisher={University of Konstanz}, address={Konstanz}, series={Advances in Database Technology}, booktitle={Proceedings 25th International Conference on Extending Database Technology (EDBT 2022)}, pages={13--26}, author={Brendle, Michael and Weber, Nick and Valiyev, Mahammad and May, Norman and Schulze, Robert and Böhm, Alexander and Moerkotte, Guido and Grossniklaus, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59633"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Valiyev, Mahammad</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-04T13:54:45Z</dcterms:available> <dc:creator>Schulze, Robert</dc:creator> <dc:contributor>May, Norman</dc:contributor> <dc:creator>Weber, Nick</dc:creator> <dc:creator>Grossniklaus, Michael</dc:creator> <dcterms:title>SAHARA : Memory Footprint Reduction of Cloud Databases with Automated Table Partitioning</dcterms:title> <dc:contributor>Brendle, Michael</dc:contributor> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dcterms:issued>2022</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Böhm, Alexander</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-04T13:54:45Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59633/1/Brendle_2-1wjvu7v8187120.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59633"/> <dc:creator>Böhm, Alexander</dc:creator> <dc:contributor>Weber, Nick</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59633/1/Brendle_2-1wjvu7v8187120.pdf"/> <dcterms:abstract xml:lang="eng">Enterprises increasingly move their databases into the cloud. As a result, database-as-a-service providers are challenged to meet the performance guarantees assured in service-level agreements (SLAs) while keeping hardware costs as low as possible. Being cost-effective is particularly crucial for cloud databases where the provisioned amount of DRAM dominates the hardware costs. A way to decrease the memory footprint is to leverage access skew in the workload by moving rarely accessed cold data to cheaper storage layers and retaining only frequently accessed hot data in main memory. In this paper, we present SAHARA, an advisor that proposes a table partitioning for column stores with minimal memory footprint while still adhering to all performance SLAs. SAHARA collects lightweight workload statistics, classifies data as hot and cold, and calculates optimal or near-optimal range partitioning layouts with low optimization time using a novel cost model. We integrated SAHARA into a commercial cloud database and show in our experiments for real-world and synthetic benchmarks a memory footprint reduction of 2.5× while still fulfilling all performance SLAs provided by the customer or advertised by the DBaaS provider.</dcterms:abstract> <dc:creator>Moerkotte, Guido</dc:creator> <dc:creator>May, Norman</dc:creator> <dc:language>eng</dc:language> <dc:creator>Brendle, Michael</dc:creator> <dc:contributor>Schulze, Robert</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Moerkotte, Guido</dc:contributor> <dc:contributor>Valiyev, Mahammad</dc:contributor> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>