SAHARA : Memory Footprint Reduction of Cloud Databases with Automated Table Partitioning
SAHARA : Memory Footprint Reduction of Cloud Databases with Automated Table Partitioning
Loading...
Date
2022
Authors
Weber, Nick
Valiyev, Mahammad
May, Norman
Schulze, Robert
Moerkotte, Guido
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Proceedings 25th International Conference on Extending Database Technology (EDBT 2022). - Konstanz : University of Konstanz, 2022. - (Advances in Database Technology ; 25,1). - pp. 13-26. - eISSN 2367-2005. - ISBN 978-3-89318-086-8
Abstract
Enterprises increasingly move their databases into the cloud. As a result, database-as-a-service providers are challenged to meet the performance guarantees assured in service-level agreements (SLAs) while keeping hardware costs as low as possible. Being cost-effective is particularly crucial for cloud databases where the provisioned amount of DRAM dominates the hardware costs. A way to decrease the memory footprint is to leverage access skew in the workload by moving rarely accessed cold data to cheaper storage layers and retaining only frequently accessed hot data in main memory. In this paper, we present SAHARA, an advisor that proposes a table partitioning for column stores with minimal memory footprint while still adhering to all performance SLAs. SAHARA collects lightweight workload statistics, classifies data as hot and cold, and calculates optimal or near-optimal range partitioning layouts with low optimization time using a novel cost model. We integrated SAHARA into a commercial cloud database and show in our experiments for real-world and synthetic benchmarks a memory footprint reduction of 2.5× while still fulfilling all performance SLAs provided by the customer or advertised by the DBaaS provider.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
25th International Conference on Extending Database Technology (EDBT 2022), Mar 29, 2022 - Apr 1, 2022, Edinburgh, UK
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
BRENDLE, Michael, Nick WEBER, Mahammad VALIYEV, Norman MAY, Robert SCHULZE, Alexander BÖHM, Guido MOERKOTTE, Michael GROSSNIKLAUS, 2022. SAHARA : Memory Footprint Reduction of Cloud Databases with Automated Table Partitioning. 25th International Conference on Extending Database Technology (EDBT 2022). Edinburgh, UK, Mar 29, 2022 - Apr 1, 2022. In: Proceedings 25th International Conference on Extending Database Technology (EDBT 2022). Konstanz:University of Konstanz, pp. 13-26. eISSN 2367-2005. ISBN 978-3-89318-086-8. Available under: doi: 10.5441/002/edbt.2022.02BibTex
@inproceedings{Brendle2022SAHAR-59633, year={2022}, doi={10.5441/002/edbt.2022.02}, title={SAHARA : Memory Footprint Reduction of Cloud Databases with Automated Table Partitioning}, number={25,1}, isbn={978-3-89318-086-8}, publisher={University of Konstanz}, address={Konstanz}, series={Advances in Database Technology}, booktitle={Proceedings 25th International Conference on Extending Database Technology (EDBT 2022)}, pages={13--26}, author={Brendle, Michael and Weber, Nick and Valiyev, Mahammad and May, Norman and Schulze, Robert and Böhm, Alexander and Moerkotte, Guido and Grossniklaus, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59633"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Valiyev, Mahammad</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-04T13:54:45Z</dcterms:available> <dc:creator>Schulze, Robert</dc:creator> <dc:contributor>May, Norman</dc:contributor> <dc:creator>Weber, Nick</dc:creator> <dc:creator>Grossniklaus, Michael</dc:creator> <dcterms:title>SAHARA : Memory Footprint Reduction of Cloud Databases with Automated Table Partitioning</dcterms:title> <dc:contributor>Brendle, Michael</dc:contributor> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dcterms:issued>2022</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Böhm, Alexander</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-04T13:54:45Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59633/1/Brendle_2-1wjvu7v8187120.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59633"/> <dc:creator>Böhm, Alexander</dc:creator> <dc:contributor>Weber, Nick</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59633/1/Brendle_2-1wjvu7v8187120.pdf"/> <dcterms:abstract xml:lang="eng">Enterprises increasingly move their databases into the cloud. As a result, database-as-a-service providers are challenged to meet the performance guarantees assured in service-level agreements (SLAs) while keeping hardware costs as low as possible. Being cost-effective is particularly crucial for cloud databases where the provisioned amount of DRAM dominates the hardware costs. A way to decrease the memory footprint is to leverage access skew in the workload by moving rarely accessed cold data to cheaper storage layers and retaining only frequently accessed hot data in main memory. In this paper, we present SAHARA, an advisor that proposes a table partitioning for column stores with minimal memory footprint while still adhering to all performance SLAs. SAHARA collects lightweight workload statistics, classifies data as hot and cold, and calculates optimal or near-optimal range partitioning layouts with low optimization time using a novel cost model. We integrated SAHARA into a commercial cloud database and show in our experiments for real-world and synthetic benchmarks a memory footprint reduction of 2.5× while still fulfilling all performance SLAs provided by the customer or advertised by the DBaaS provider.</dcterms:abstract> <dc:creator>Moerkotte, Guido</dc:creator> <dc:creator>May, Norman</dc:creator> <dc:language>eng</dc:language> <dc:creator>Brendle, Michael</dc:creator> <dc:contributor>Schulze, Robert</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Moerkotte, Guido</dc:contributor> <dc:contributor>Valiyev, Mahammad</dc:contributor> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes