Publikation: The interplay of structural features and observed dissimilarities among centrality indices
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
An abundance of centrality indices has been proposed which capture the importance of nodes in a network based on different structural features. While there remains a persistent belief that similarities in outcomes of indices is contingent on their technical definitions, a growing body of research shows that structural features affect observed similarities more than technicalities. We conduct a series of experiments on artificial networks to trace the influence of specific structural features on the similarity of indices which confirm previous results in the literature. Our analysis on 1163 real-world networks, however, shows that little of the observations on synthetic networks convincingly carry over to empirical settings. Our findings suggest that although it seems clear that (dis)similarities among centralities depend on structural properties of the network, using correlation type analyses do not seem to be a promising approach to uncover such connections.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHOCH, David, Termeh SHAFIE, 2024. The interplay of structural features and observed dissimilarities among centrality indices. In: Social Networks. Elsevier. 2024, 78, pp. 54-64. ISSN 0378-8733. eISSN 1879-2111. Available under: doi: 10.1016/j.socnet.2023.11.006BibTex
@article{Schoch2024inter-69021, year={2024}, doi={10.1016/j.socnet.2023.11.006}, title={The interplay of structural features and observed dissimilarities among centrality indices}, volume={78}, issn={0378-8733}, journal={Social Networks}, pages={54--64}, author={Schoch, David and Shafie, Termeh} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69021"> <dc:creator>Shafie, Termeh</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69021"/> <dcterms:title>The interplay of structural features and observed dissimilarities among centrality indices</dcterms:title> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Shafie, Termeh</dc:contributor> <dcterms:abstract>An abundance of centrality indices has been proposed which capture the importance of nodes in a network based on different structural features. While there remains a persistent belief that similarities in outcomes of indices is contingent on their technical definitions, a growing body of research shows that structural features affect observed similarities more than technicalities. We conduct a series of experiments on artificial networks to trace the influence of specific structural features on the similarity of indices which confirm previous results in the literature. Our analysis on 1163 real-world networks, however, shows that little of the observations on synthetic networks convincingly carry over to empirical settings. Our findings suggest that although it seems clear that (dis)similarities among centralities depend on structural properties of the network, using correlation type analyses do not seem to be a promising approach to uncover such connections.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-12T07:01:16Z</dcterms:available> <dc:contributor>Schoch, David</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-12T07:01:16Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Schoch, David</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2024</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69021/1/Schoch_2-1wg3l0ujsyksu8.pdf"/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69021/1/Schoch_2-1wg3l0ujsyksu8.pdf"/> </rdf:Description> </rdf:RDF>