Publikation: Extended spin relaxation times of optically addressed vanadium defects in silicon carbide at telecommunication frequencies
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfÀhiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der UniversitÀt Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Optically interfaced solid-state defects are promising candidates for quantum communication technologies. The ideal defect system would feature bright telecom emission, long-lived spin states, and a scalable material platform, simultaneously. Here we use one such system, vanadium (V4+) in silicon carbide, to establish a potential telecom spin-photon interface within a mature semiconductor host. This demonstration of efficient optical spin polarization and readout facilitates all-optical measurements of temperature-dependent spin relaxation times (đ1). By using this technique, and lowering the temperature from approximately 2 K to approximately 100 mK, we observe a remarkable 4-orders-of-magnitude increase in spin đ1 across all measured sites, with site-specific values ranging from 57.1 ms to 27.9 s. Furthermore, we identify the underlying relaxation mechanisms, which involve a two-phonon Orbach process, indicating the opportunity for strain tuning to enable qubit operation at higher temperatures. These results position V4+ in SiâąC as a prime candidate for scalable quantum nodes in future quantum networks.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
AHN, Jonghoon, Christina WICKER, Nolan BITNER, Michael T. SOLOMON, Benedikt TISSOT, Guido BURKARD, Alan M. DIBOS, Jiefei ZHANG, F. Joseph HEREMANS, David D. AWSCHALOM, 2024. Extended spin relaxation times of optically addressed vanadium defects in silicon carbide at telecommunication frequencies. In: Physical Review Applied. American Physical Society (APS). 2024, 22(4), 044078. eISSN 2331-7019. VerfĂŒgbar unter: doi: 10.1103/physrevapplied.22.044078BibTex
@article{Ahn2024-10-29Exten-71152, year={2024}, doi={10.1103/physrevapplied.22.044078}, title={Extended spin relaxation times of optically addressed vanadium defects in silicon carbide at telecommunication frequencies}, number={4}, volume={22}, journal={Physical Review Applied}, author={Ahn, Jonghoon and Wicker, Christina and Bitner, Nolan and Solomon, Michael T. and Tissot, Benedikt and Burkard, Guido and Dibos, Alan M. and Zhang, Jiefei and Heremans, F. Joseph and Awschalom, David D.}, note={Article Number: 044078} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71152"> <dc:creator>Zhang, Jiefei</dc:creator> <dcterms:abstract>Optically interfaced solid-state defects are promising candidates for quantum communication technologies. The ideal defect system would feature bright telecom emission, long-lived spin states, and a scalable material platform, simultaneously. Here we use one such system, vanadium (V<sup>4+</sup>) in silicon carbide, to establish a potential telecom spin-photon interface within a mature semiconductor host. This demonstration of efficient optical spin polarization and readout facilitates all-optical measurements of temperature-dependent spin relaxation times (đ<sub>1</sub>). By using this technique, and lowering the temperature from approximately 2 K to approximately 100 mK, we observe a remarkable 4-orders-of-magnitude increase in spin đ<sub>1</sub> across all measured sites, with site-specific values ranging from 57.1 ms to 27.9 s. Furthermore, we identify the underlying relaxation mechanisms, which involve a two-phonon Orbach process, indicating the opportunity for strain tuning to enable qubit operation at higher temperatures. These results position V<sup>4+</sup> in SiâąC as a prime candidate for scalable quantum nodes in future quantum networks.</dcterms:abstract> <dc:contributor>Zhang, Jiefei</dc:contributor> <dc:contributor>Bitner, Nolan</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71152"/> <dc:creator>Heremans, F. Joseph</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Tissot, Benedikt</dc:creator> <dc:contributor>Tissot, Benedikt</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-07T13:52:43Z</dcterms:available> <dc:language>eng</dc:language> <dc:creator>Burkard, Guido</dc:creator> <dcterms:title>Extended spin relaxation times of optically addressed vanadium defects in silicon carbide at telecommunication frequencies</dcterms:title> <dc:creator>Dibos, Alan M.</dc:creator> <dc:creator>Awschalom, David D.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-07T13:52:43Z</dc:date> <dc:contributor>Wicker, Christina</dc:contributor> <dcterms:issued>2024-10-29</dcterms:issued> <dc:contributor>Heremans, F. Joseph</dc:contributor> <dc:creator>Bitner, Nolan</dc:creator> <dc:contributor>Solomon, Michael T.</dc:contributor> <dc:contributor>Awschalom, David D.</dc:contributor> <dc:contributor>Dibos, Alan M.</dc:contributor> <dc:creator>Ahn, Jonghoon</dc:creator> <dc:creator>Solomon, Michael T.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Burkard, Guido</dc:contributor> <dc:contributor>Ahn, Jonghoon</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Wicker, Christina</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> </rdf:Description> </rdf:RDF>