Publikation: High-Pressure Effect on the Optical Extinction of a Single Gold Nanoparticle
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
When reducing the size of a material from bulk down to nanoscale, the enhanced surface-to-volume ratio and the presence of interfaces make the properties of nano-objects very sensitive not only to confinement effects but also to their local environment. In the optical domain, the latter dependence can be exploited to tune the plasmonic response of metal nanoparticles by controlling their surroundings, notably applying high pressures. To date, only a few optical absorption experiments have demonstrated this feasibility, on ensembles of metal nanoparticles in a diamond anvil cell. Here, we report a nontrivial combination between a spatial modulation spectroscopy microscope and an ultraflat diamond anvil cell, allowing us to quantitatively investigate the high-pressure optical extinction spectrum of an individual nano-object. A large tuning of the surface plasmon resonance of a gold nanobipyramid is experimentally demonstrated up to 10 GPa, in quantitative agreement with finite-element simulations and an analytical model disentangling the impact of metal and local environment dielectric modifications. High-pressure optical characterizations of single nanoparticles allow for the accurate investigation and modeling of size, strain, and environment effects on physical properties of nano-objects and also enable fine-tuned applications in nanocomposites, nanoelectromechanical systems, or nanosensing devices.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MEDEGHINI, Fabio, Mike HETTICH, Romain ROUXEL, Silvio D. SILVA SANTOS, Sylvain HERMELIN, Abraao TORRES DIAS, Franck LEGRAND, Paolo MAIOLI, Aurélien CRUT, Natalia DEL FATTI, 2018. High-Pressure Effect on the Optical Extinction of a Single Gold Nanoparticle. In: ACS nano. 2018, 12, pp. 10310-10316. ISSN 1936-0851. eISSN 1936-086X. Available under: doi: 10.1021/acsnano.8b05539BibTex
@article{Medeghini2018-10-09HighP-44472, year={2018}, doi={10.1021/acsnano.8b05539}, title={High-Pressure Effect on the Optical Extinction of a Single Gold Nanoparticle}, volume={12}, issn={1936-0851}, journal={ACS nano}, pages={10310--10316}, author={Medeghini, Fabio and Hettich, Mike and Rouxel, Romain and Silva Santos, Silvio D. and Hermelin, Sylvain and Torres Dias, Abraao and Legrand, Franck and Maioli, Paolo and Crut, Aurélien and Del Fatti, Natalia} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44472"> <dc:contributor>Del Fatti, Natalia</dc:contributor> <dcterms:issued>2018-10-09</dcterms:issued> <dc:creator>Torres Dias, Abraao</dc:creator> <dc:contributor>Rouxel, Romain</dc:contributor> <dc:contributor>Hermelin, Sylvain</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Hermelin, Sylvain</dc:creator> <dc:contributor>Legrand, Franck</dc:contributor> <dc:contributor>Silva Santos, Silvio D.</dc:contributor> <dc:creator>Maioli, Paolo</dc:creator> <dc:creator>Del Fatti, Natalia</dc:creator> <dc:creator>Silva Santos, Silvio D.</dc:creator> <dc:contributor>Medeghini, Fabio</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Medeghini, Fabio</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-09T10:31:01Z</dc:date> <dc:creator>Crut, Aurélien</dc:creator> <dc:creator>Rouxel, Romain</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Hettich, Mike</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44472"/> <dc:contributor>Maioli, Paolo</dc:contributor> <dc:contributor>Crut, Aurélien</dc:contributor> <dcterms:title>High-Pressure Effect on the Optical Extinction of a Single Gold Nanoparticle</dcterms:title> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-09T10:31:01Z</dcterms:available> <dc:creator>Legrand, Franck</dc:creator> <dc:contributor>Hettich, Mike</dc:contributor> <dc:contributor>Torres Dias, Abraao</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">When reducing the size of a material from bulk down to nanoscale, the enhanced surface-to-volume ratio and the presence of interfaces make the properties of nano-objects very sensitive not only to confinement effects but also to their local environment. In the optical domain, the latter dependence can be exploited to tune the plasmonic response of metal nanoparticles by controlling their surroundings, notably applying high pressures. To date, only a few optical absorption experiments have demonstrated this feasibility, on ensembles of metal nanoparticles in a diamond anvil cell. Here, we report a nontrivial combination between a spatial modulation spectroscopy microscope and an ultraflat diamond anvil cell, allowing us to quantitatively investigate the high-pressure optical extinction spectrum of an individual nano-object. A large tuning of the surface plasmon resonance of a gold nanobipyramid is experimentally demonstrated up to 10 GPa, in quantitative agreement with finite-element simulations and an analytical model disentangling the impact of metal and local environment dielectric modifications. High-pressure optical characterizations of single nanoparticles allow for the accurate investigation and modeling of size, strain, and environment effects on physical properties of nano-objects and also enable fine-tuned applications in nanocomposites, nanoelectromechanical systems, or nanosensing devices.</dcterms:abstract> </rdf:Description> </rdf:RDF>