Publikation: A Rule-Based Modeling Approach for Studying Animal Collectives : A Case Study of Juvenile Honeybee Thermotaxis
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Biological collectives, ranging from social insects like ants, honeybees to vertebrate groups such as bird flocks, fish schools, have long served as a rich source of inspiration for designing and deploying artificial systems, including robotic swarms. However, a persistent challenge lies in bridging the gap between individual-level behavior and the emergent collective dynamics. Classical equation-based models often fall short in this regard, as the micro-to-macro link are hard to interpret or modify, since this link is not explicit.
In this paper, we propose the rule-based modeling language Kappa for modelling biological collectives. Unlike approaches that directly model emergent behavior through equations, Kappa allows one to observe the collective behavior emerging from local, mechanistic interaction rules. These rules are both intuitive to interpret and easy to edit, allowing modelers to design and conduct in silico perturbation experiments at the level of individual agents. In addition, once written in Kappa, the collective dynamics can not only be explored through simulation, but also subject to advanced formal analysis techniques, such as model abstraction or causal queries. We demonstrate our approach through a case study of thermotaxis-driven aggregation in juvenile honeybees. Specifically, we investigate how heterogeneous compositions of agents influence aggregation at spatial areas with optimal temperature.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BOUGUÉON, Matthieu, Tatjana PETROV, Albin SALAZAR, 2026. A Rule-Based Modeling Approach for Studying Animal Collectives : A Case Study of Juvenile Honeybee Thermotaxis. 23rd International Conference on Computational Methods in Systems Biology : CMSB 2025. Lyon, France, 10. Sept. 2025 - 12. Sept. 2025. In: FAGES, François, Hrsg., Sabine PÉRÈS, Hrsg.. Computational Methods in Systems Biology : 23rd International Conference, CMSB 2025, Proceedings. Cham: Springer, 2026, S. 174-194. Lecture Notes in Computer Science. 15959. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-032-01435-1. Verfügbar unter: doi: 10.1007/978-3-032-01436-8_10BibTex
@inproceedings{Bougueon2026RuleB-74968,
title={A Rule-Based Modeling Approach for Studying Animal Collectives : A Case Study of Juvenile Honeybee Thermotaxis},
year={2026},
doi={10.1007/978-3-032-01436-8_10},
number={15959},
isbn={978-3-032-01435-1},
issn={0302-9743},
address={Cham},
publisher={Springer},
series={Lecture Notes in Computer Science},
booktitle={Computational Methods in Systems Biology : 23rd International Conference, CMSB 2025, Proceedings},
pages={174--194},
editor={Fages, François and Pérès, Sabine},
author={Bouguéon, Matthieu and Petrov, Tatjana and Salazar, Albin}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74968">
<dc:creator>Petrov, Tatjana</dc:creator>
<dc:language>eng</dc:language>
<dcterms:issued>2026</dcterms:issued>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74968"/>
<dcterms:title>A Rule-Based Modeling Approach for Studying Animal Collectives : A Case Study of Juvenile Honeybee Thermotaxis</dcterms:title>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-27T15:04:48Z</dc:date>
<dc:contributor>Salazar, Albin</dc:contributor>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dc:creator>Salazar, Albin</dc:creator>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
<dc:contributor>Bouguéon, Matthieu</dc:contributor>
<dcterms:abstract>Biological collectives, ranging from social insects like ants, honeybees to vertebrate groups such as bird flocks, fish schools, have long served as a rich source of inspiration for designing and deploying artificial systems, including robotic swarms. However, a persistent challenge lies in bridging the gap between individual-level behavior and the emergent collective dynamics. Classical equation-based models often fall short in this regard, as the micro-to-macro link are hard to interpret or modify, since this link is not explicit.
In this paper, we propose the rule-based modeling language Kappa for modelling biological collectives. Unlike approaches that directly model emergent behavior through equations, Kappa allows one to observe the collective behavior emerging from local, mechanistic interaction rules. These rules are both intuitive to interpret and easy to edit, allowing modelers to design and conduct in silico perturbation experiments at the level of individual agents. In addition, once written in Kappa, the collective dynamics can not only be explored through simulation, but also subject to advanced formal analysis techniques, such as model abstraction or causal queries. We demonstrate our approach through a case study of thermotaxis-driven aggregation in juvenile honeybees. Specifically, we investigate how heterogeneous compositions of agents influence aggregation at spatial areas with optimal temperature.</dcterms:abstract>
<dc:contributor>Petrov, Tatjana</dc:contributor>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:creator>Bouguéon, Matthieu</dc:creator>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-27T15:04:48Z</dcterms:available>
</rdf:Description>
</rdf:RDF>