Publikation:

A Rule-Based Modeling Approach for Studying Animal Collectives : A Case Study of Juvenile Honeybee Thermotaxis

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2026

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

FAGES, François, Hrsg., Sabine PÉRÈS, Hrsg.. Computational Methods in Systems Biology : 23rd International Conference, CMSB 2025, Proceedings. Cham: Springer, 2026, S. 174-194. Lecture Notes in Computer Science. 15959. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-032-01435-1. Verfügbar unter: doi: 10.1007/978-3-032-01436-8_10

Zusammenfassung

Biological collectives, ranging from social insects like ants, honeybees to vertebrate groups such as bird flocks, fish schools, have long served as a rich source of inspiration for designing and deploying artificial systems, including robotic swarms. However, a persistent challenge lies in bridging the gap between individual-level behavior and the emergent collective dynamics. Classical equation-based models often fall short in this regard, as the micro-to-macro link are hard to interpret or modify, since this link is not explicit.

In this paper, we propose the rule-based modeling language Kappa for modelling biological collectives. Unlike approaches that directly model emergent behavior through equations, Kappa allows one to observe the collective behavior emerging from local, mechanistic interaction rules. These rules are both intuitive to interpret and easy to edit, allowing modelers to design and conduct in silico perturbation experiments at the level of individual agents. In addition, once written in Kappa, the collective dynamics can not only be explored through simulation, but also subject to advanced formal analysis techniques, such as model abstraction or causal queries. We demonstrate our approach through a case study of thermotaxis-driven aggregation in juvenile honeybees. Specifically, we investigate how heterogeneous compositions of agents influence aggregation at spatial areas with optimal temperature.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

collective behavior, rule-based modeling, formal methods, swarm robotics

Konferenz

23rd International Conference on Computational Methods in Systems Biology : CMSB 2025, 10. Sept. 2025 - 12. Sept. 2025, Lyon, France
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BOUGUÉON, Matthieu, Tatjana PETROV, Albin SALAZAR, 2026. A Rule-Based Modeling Approach for Studying Animal Collectives : A Case Study of Juvenile Honeybee Thermotaxis. 23rd International Conference on Computational Methods in Systems Biology : CMSB 2025. Lyon, France, 10. Sept. 2025 - 12. Sept. 2025. In: FAGES, François, Hrsg., Sabine PÉRÈS, Hrsg.. Computational Methods in Systems Biology : 23rd International Conference, CMSB 2025, Proceedings. Cham: Springer, 2026, S. 174-194. Lecture Notes in Computer Science. 15959. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-032-01435-1. Verfügbar unter: doi: 10.1007/978-3-032-01436-8_10
BibTex
@inproceedings{Bougueon2026RuleB-74968,
  title={A Rule-Based Modeling Approach for Studying Animal Collectives : A Case Study of Juvenile Honeybee Thermotaxis},
  year={2026},
  doi={10.1007/978-3-032-01436-8_10},
  number={15959},
  isbn={978-3-032-01435-1},
  issn={0302-9743},
  address={Cham},
  publisher={Springer},
  series={Lecture Notes in Computer Science},
  booktitle={Computational Methods in Systems Biology : 23rd International Conference, CMSB 2025, Proceedings},
  pages={174--194},
  editor={Fages, François and Pérès, Sabine},
  author={Bouguéon, Matthieu and Petrov, Tatjana and Salazar, Albin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74968">
    <dc:creator>Petrov, Tatjana</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:issued>2026</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74968"/>
    <dcterms:title>A Rule-Based Modeling Approach for Studying Animal Collectives : A Case Study of Juvenile Honeybee Thermotaxis</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-27T15:04:48Z</dc:date>
    <dc:contributor>Salazar, Albin</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Salazar, Albin</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Bouguéon, Matthieu</dc:contributor>
    <dcterms:abstract>Biological collectives, ranging from social insects like ants, honeybees to vertebrate groups such as bird flocks, fish schools, have long served as a rich source of inspiration for designing and deploying artificial systems, including robotic swarms. However, a persistent challenge lies in bridging the gap between individual-level behavior and the emergent collective dynamics. Classical equation-based models often fall short in this regard, as the micro-to-macro link are hard to interpret or modify, since this link is not explicit.

In this paper, we propose the rule-based modeling language Kappa for modelling biological collectives. Unlike approaches that directly model emergent behavior through equations, Kappa allows one to observe the collective behavior emerging from local, mechanistic interaction rules. These rules are both intuitive to interpret and easy to edit, allowing modelers to design and conduct in silico perturbation experiments at the level of individual agents. In addition, once written in Kappa, the collective dynamics can not only be explored through simulation, but also subject to advanced formal analysis techniques, such as model abstraction or causal queries. We demonstrate our approach through a case study of thermotaxis-driven aggregation in juvenile honeybees. Specifically, we investigate how heterogeneous compositions of agents influence aggregation at spatial areas with optimal temperature.</dcterms:abstract>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Bouguéon, Matthieu</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-27T15:04:48Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen