Publikation: Tracing attosecond electron emission from a nanometric metal tip
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Solids exposed to intense electric fields release electrons through tunnelling. This fundamental quantum process lies at the heart of various applications, ranging from high brightness electron sources in d.c. operation1,2 to petahertz vacuum electronics in laser-driven operation3,4,5,6,7,8. In the latter process, the electron wavepacket undergoes semiclassical dynamics9,10 in the strong oscillating laser field, similar to strong-field and attosecond physics in the gas phase11,12. There, the subcycle electron dynamics has been determined with a stunning precision of tens of attoseconds13,14,15, but at solids the quantum dynamics including the emission time window has so far not been measured. Here we show that two-colour modulation spectroscopy of backscattering electrons16 uncovers the suboptical-cycle strong-field emission dynamics from nanostructures, with attosecond precision. In our experiment, photoelectron spectra of electrons emitted from a sharp metallic tip are measured as function of the relative phase between the two colours. Projecting the solution of the time-dependent Schrödinger equation onto classical trajectories relates phase-dependent signatures in the spectra to the emission dynamics and yields an emission duration of 710 ± 30 attoseconds by matching the quantum model to the experiment. Our results open the door to the quantitative timing and precise active control of strong-field photoemission from solid state and other systems and have direct ramifications for diverse fields such as ultrafast electron sources17, quantum degeneracy studies and sub-Poissonian electron beams18,19,20,21, nanoplasmonics22 and petahertz electronics23.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DIENSTBIER, Philip, Lennart SEIFFERT, Timo PASCHEN, Andreas LIEHL, Alfred LEITENSTORFER, Thomas FENNEL, Peter HOMMELHOFF, 2023. Tracing attosecond electron emission from a nanometric metal tip. In: Nature. Springer. 2023, 616(7958), pp. 702-706. ISSN 0028-0836. eISSN 1476-4687. Available under: doi: 10.1038/s41586-023-05839-6BibTex
@article{Dienstbier2023Traci-67345, year={2023}, doi={10.1038/s41586-023-05839-6}, title={Tracing attosecond electron emission from a nanometric metal tip}, number={7958}, volume={616}, issn={0028-0836}, journal={Nature}, pages={702--706}, author={Dienstbier, Philip and Seiffert, Lennart and Paschen, Timo and Liehl, Andreas and Leitenstorfer, Alfred and Fennel, Thomas and Hommelhoff, Peter} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67345"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67345/1/Dienstbier_2-1waezjjzufilp3.pdf"/> <dc:creator>Liehl, Andreas</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-11T05:29:25Z</dc:date> <dc:creator>Paschen, Timo</dc:creator> <dc:contributor>Hommelhoff, Peter</dc:contributor> <dc:creator>Fennel, Thomas</dc:creator> <dc:creator>Hommelhoff, Peter</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67345"/> <dcterms:issued>2023</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Paschen, Timo</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Leitenstorfer, Alfred</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Dienstbier, Philip</dc:creator> <dcterms:title>Tracing attosecond electron emission from a nanometric metal tip</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-07-11T05:29:25Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67345/1/Dienstbier_2-1waezjjzufilp3.pdf"/> <dc:contributor>Fennel, Thomas</dc:contributor> <dc:contributor>Leitenstorfer, Alfred</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Seiffert, Lennart</dc:contributor> <dc:creator>Seiffert, Lennart</dc:creator> <dc:contributor>Liehl, Andreas</dc:contributor> <dc:contributor>Dienstbier, Philip</dc:contributor> <dcterms:abstract>Solids exposed to intense electric fields release electrons through tunnelling. This fundamental quantum process lies at the heart of various applications, ranging from high brightness electron sources in d.c. operation1,2 to petahertz vacuum electronics in laser-driven operation3,4,5,6,7,8. In the latter process, the electron wavepacket undergoes semiclassical dynamics9,10 in the strong oscillating laser field, similar to strong-field and attosecond physics in the gas phase11,12. There, the subcycle electron dynamics has been determined with a stunning precision of tens of attoseconds13,14,15, but at solids the quantum dynamics including the emission time window has so far not been measured. Here we show that two-colour modulation spectroscopy of backscattering electrons16 uncovers the suboptical-cycle strong-field emission dynamics from nanostructures, with attosecond precision. In our experiment, photoelectron spectra of electrons emitted from a sharp metallic tip are measured as function of the relative phase between the two colours. Projecting the solution of the time-dependent Schrödinger equation onto classical trajectories relates phase-dependent signatures in the spectra to the emission dynamics and yields an emission duration of 710 ± 30 attoseconds by matching the quantum model to the experiment. Our results open the door to the quantitative timing and precise active control of strong-field photoemission from solid state and other systems and have direct ramifications for diverse fields such as ultrafast electron sources17, quantum degeneracy studies and sub-Poissonian electron beams18,19,20,21, nanoplasmonics22 and petahertz electronics23.</dcterms:abstract> </rdf:Description> </rdf:RDF>