Publikation:

Statistical methods for data with long-range dependence

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

1992

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Statistical Science. 1992, 7(4), pp. 404-416. ISSN 0883-4237. Available under: doi: 10.1214/ss/1177011122

Zusammenfassung

It is well known to applied statisticians and scientists that the assumption of independence is often not valid for real data. In particular, even when all precautions are taken to prevent dependence, slowly decaying serial correlations frequently occur. If not taken into account, they can have disastrous effects on statistical inference. This phenomenon has been observed empirically by many prominent scientists long before suitable mathematical models were known. Apart from some scattered early references, mathematical models with long-range dependence were first introduced to statistics by Mandelbrot and his co-workers (Mandelbrot and Wallis, 1968, 1969; Mandelbrot and van Ness, 1968). Since then, long-range dependence in statistics has gained increasing attention. Parsimonious models with long memory are stationary increments of self-similar processes with self-similarity parameter $H \in (1/2,1)$, fractional ARIMA processes and other stationary stochastic processes with non-summable correlations. In the last decade, many results on statistical inference for such processes have been established. In the present paper, a review of these results is given.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Long-range dependence, fractional Gaussian Noise, fractional ARIMA, self-similar, point estimation, interval estimation, prediction

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERAN, Jan, 1992. Statistical methods for data with long-range dependence. In: Statistical Science. 1992, 7(4), pp. 404-416. ISSN 0883-4237. Available under: doi: 10.1214/ss/1177011122
BibTex
@article{Beran1992Stati-18815,
  year={1992},
  doi={10.1214/ss/1177011122},
  title={Statistical methods for data with long-range dependence},
  number={4},
  volume={7},
  issn={0883-4237},
  journal={Statistical Science},
  pages={404--416},
  author={Beran, Jan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18815">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dc:creator>Beran, Jan</dc:creator>
    <dcterms:bibliographicCitation>Publ. in: Statistical Science ; 7 (1992), 4. - S. 404-416</dcterms:bibliographicCitation>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dcterms:issued>1992</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18815"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">It is well known to applied statisticians and scientists that the assumption of independence is often not valid for real data. In particular, even when all precautions are taken to prevent dependence, slowly decaying serial correlations frequently occur. If not taken into account, they can have disastrous effects on statistical inference. This phenomenon has been observed empirically by many prominent scientists long before suitable mathematical models were known. Apart from some scattered early references, mathematical models with long-range dependence were first introduced to statistics by Mandelbrot and his co-workers (Mandelbrot and Wallis, 1968, 1969; Mandelbrot and van Ness, 1968). Since then, long-range dependence in statistics has gained increasing attention. Parsimonious models with long memory are stationary increments of self-similar processes with self-similarity parameter $H \in (1/2,1)$, fractional ARIMA processes and other stationary stochastic processes with non-summable correlations. In the last decade, many results on statistical inference for such processes have been established. In the present paper, a review of these results is given.</dcterms:abstract>
    <dcterms:title>Statistical methods for data with long-range dependence</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-21T07:45:53Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-21T07:45:53Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen