Publikation:

Stability Evaluation of Event Detection Techniques for Twitter

Lade...
Vorschaubild

Dateien

Weiler_0-370322.pdf
Weiler_0-370322.pdfGröße: 364.27 KBDownloads: 413

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BOSTRÖM, Henrik, ed. and others. Advances in Intelligent Data Analysis XV : 15th International Symposium, IDA 2016, Stockholm, Sweden, October 13-15, 2016, Proceedings. Cham: Springer, 2016, pp. 368-380. Lecture Notes in Computer Science. 9897. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-46348-3. Available under: doi: 10.1007/978-3-319-46349-0_32

Zusammenfassung

Twitter continues to gain popularity as a source of up-to-date news and information. As a result, numerous event detection techniques have been proposed to cope with the steadily increasing rate and volume of social media data streams. Although most of these works conduct some evaluation of the proposed technique, comparing their effectiveness is a challenging task. In this paper, we examine the challenges to reproducing evaluation results for event detection techniques. We apply several event detection techniques and vary four parameters, namely time window (15 vs. 30 vs. 60 mins), stopwords (include vs. exclude), retweets (include vs. exclude), and the number of terms that define an event (1...5 terms). Our experiments use real-world Twitter streaming data and show that varying these parameters alone significantly influences the outcomes of the event detection techniques, sometimes in unforeseen ways. We conclude that even minor variations in event detection techniques may lead to major difficulties in reproducing experiments.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

15th International Symposium, IDA 2016, 13. Okt. 2016 - 15. Okt. 2016, Stockholm
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WEILER, Andreas, Joeran BEEL, Bela GIPP, Michael GROSSNIKLAUS, 2016. Stability Evaluation of Event Detection Techniques for Twitter. 15th International Symposium, IDA 2016. Stockholm, 13. Okt. 2016 - 15. Okt. 2016. In: BOSTRÖM, Henrik, ed. and others. Advances in Intelligent Data Analysis XV : 15th International Symposium, IDA 2016, Stockholm, Sweden, October 13-15, 2016, Proceedings. Cham: Springer, 2016, pp. 368-380. Lecture Notes in Computer Science. 9897. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-46348-3. Available under: doi: 10.1007/978-3-319-46349-0_32
BibTex
@inproceedings{Weiler2016-09-21Stabi-35785,
  year={2016},
  doi={10.1007/978-3-319-46349-0_32},
  title={Stability Evaluation of Event Detection Techniques for Twitter},
  number={9897},
  isbn={978-3-319-46348-3},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Advances in Intelligent Data Analysis XV : 15th International Symposium, IDA 2016, Stockholm, Sweden, October 13-15, 2016, Proceedings},
  pages={368--380},
  editor={Boström, Henrik},
  author={Weiler, Andreas and Beel, Joeran and Gipp, Bela and Grossniklaus, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35785">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-10-31T09:33:03Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Stability Evaluation of Event Detection Techniques for Twitter</dcterms:title>
    <dc:creator>Beel, Joeran</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Twitter continues to gain popularity as a source of up-to-date news and information. As a result, numerous event detection techniques have been proposed to cope with the steadily increasing rate and volume of social media data streams. Although most of these works conduct some evaluation of the proposed technique, comparing their effectiveness is a challenging task. In this paper, we examine the challenges to reproducing evaluation results for event detection techniques. We apply several event detection techniques and vary four parameters, namely time window (15 vs. 30 vs. 60 mins), stopwords (include vs. exclude), retweets (include vs. exclude), and the number of terms that define an event (1...5 terms). Our experiments use real-world Twitter streaming data and show that varying these parameters alone significantly influences the outcomes of the event detection techniques, sometimes in unforeseen ways. We conclude that even minor variations in event detection techniques may lead to major difficulties in reproducing experiments.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Weiler, Andreas</dc:creator>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dc:creator>Gipp, Bela</dc:creator>
    <dc:contributor>Beel, Joeran</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/35785/1/Weiler_0-370322.pdf"/>
    <dcterms:issued>2016-09-21</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/35785"/>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/35785/1/Weiler_0-370322.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-10-31T09:33:03Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen