CIFOL : Case-Intensional First Order Logic ; (I) Toward a Theory of Sorts
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This is part I of a two-part essay introducing case-intensional first order logic (CIFOL), an easy-to-use, uniform, powerful, and useful combination of first-order logic with modal logic resulting from philosophical and technical modifications of Bressan's General interpreted modal calculus (Yale University Press 1972). CIFOL starts with a set of cases; each expression has an extension in each case and an intension, which is the function from the cases to the respective case-relative extensions. Predication is intensional; identity is extensional. Definite descriptions are context-independent terms, and lambda-predicates and -operators can be introduced without constraints. These logical resources allow one to define, within CIFOL, important properties of properties, viz., extensionality (whether the property applies, depends only on an extension in one case) and absoluteness, Bressan's chief innovation that allows tracing an individual across cases without recourse to any notion of "rigid designation" or "trans-world identity." Thereby CIFOL abstains from incorporating any metaphysical principles into the quantificational machinery, unlike extant frameworks of quantified modal logic. We claim that this neutrality makes CIFOL a useful tool for discussing both metaphysical and scientific arguments involving modality and quantification, and we illustrate by discussing in diagrammatic detail a number of such arguments involving the extensional identification of individuals via absolute (substance) properties, essential properties, de re vs. de dicto, and the results of possible tests.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BELNAP, Nuel, Thomas MÜLLER, 2013. CIFOL : Case-Intensional First Order Logic ; (I) Toward a Theory of Sorts. In: Journal of Philosophical Logic. 2013, 43(2-3), pp. 393-437. ISSN 0022-3611. eISSN 1573-0433. Available under: doi: 10.1007/s10992-012-9267-xBibTex
@article{Belnap2013CIFOL-27098, year={2013}, doi={10.1007/s10992-012-9267-x}, title={CIFOL : Case-Intensional First Order Logic ; (I) Toward a Theory of Sorts}, number={2-3}, volume={43}, issn={0022-3611}, journal={Journal of Philosophical Logic}, pages={393--437}, author={Belnap, Nuel and Müller, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27098"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-20T20:11:08Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27098/2/Belnap_270981.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27098/2/Belnap_270981.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">This is part I of a two-part essay introducing case-intensional first order logic (CIFOL), an easy-to-use, uniform, powerful, and useful combination of first-order logic with modal logic resulting from philosophical and technical modifications of Bressan's General interpreted modal calculus (Yale University Press 1972). CIFOL starts with a set of cases; each expression has an extension in each case and an intension, which is the function from the cases to the respective case-relative extensions. Predication is intensional; identity is extensional. Definite descriptions are context-independent terms, and lambda-predicates and -operators can be introduced without constraints. These logical resources allow one to define, within CIFOL, important properties of properties, viz., extensionality (whether the property applies, depends only on an extension in one case) and absoluteness, Bressan's chief innovation that allows tracing an individual across cases without recourse to any notion of "rigid designation" or "trans-world identity." Thereby CIFOL abstains from incorporating any metaphysical principles into the quantificational machinery, unlike extant frameworks of quantified modal logic. We claim that this neutrality makes CIFOL a useful tool for discussing both metaphysical and scientific arguments involving modality and quantification, and we illustrate by discussing in diagrammatic detail a number of such arguments involving the extensional identification of individuals via absolute (substance) properties, essential properties, de re vs. de dicto, and the results of possible tests.</dcterms:abstract> <dc:creator>Belnap, Nuel</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27098"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:creator>Müller, Thomas</dc:creator> <dcterms:issued>2013</dcterms:issued> <dcterms:bibliographicCitation>Journal of Philosophical Logic ; 43 (2014), 2-3. - S. 393-437</dcterms:bibliographicCitation> <dcterms:title>CIFOL : Case-Intensional First Order Logic ; (I) Toward a Theory of Sorts</dcterms:title> <dc:contributor>Belnap, Nuel</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-20T20:11:08Z</dc:date> <dc:contributor>Müller, Thomas</dc:contributor> </rdf:Description> </rdf:RDF>