Publikation: A unified framework for estimating parameters of kinetic biological models
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Utilizing kinetic models of biological systems commonly require computational approaches to estimate parameters, posing a variety of challenges due to their highly non-linear and dynamic nature, which is further complicated by the issue of non-identifiability. We propose a novel parameter estimation framework by combining approaches for solving identifiability with a recently introduced filtering technique that can uniquely estimate parameters where conventional methods fail. This framework first conducts a thorough analysis to identify and classify the non-identifiable parameters and provides a guideline for solving them. If no feasible solution can be found, the framework instead initializes the filtering technique with informed prior to yield a unique solution.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BAKER, Syed Murtuza, C. Hart POSKAR, Falk SCHREIBER, Björn H. JUNKER, 2015. A unified framework for estimating parameters of kinetic biological models. In: BMC Bioinformatics. 2015, 16, 104. eISSN 1471-2105. Available under: doi: 10.1186/s12859-015-0500-9BibTex
@article{Baker2015-12unifi-37681, year={2015}, doi={10.1186/s12859-015-0500-9}, title={A unified framework for estimating parameters of kinetic biological models}, volume={16}, journal={BMC Bioinformatics}, author={Baker, Syed Murtuza and Poskar, C. Hart and Schreiber, Falk and Junker, Björn H.}, note={Article Number: 104} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37681"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Schreiber, Falk</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:rights>Attribution 4.0 International</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-22T13:50:55Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-22T13:50:55Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37681"/> <dc:creator>Junker, Björn H.</dc:creator> <dc:contributor>Baker, Syed Murtuza</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37681/3/Baker_0-395174.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37681/3/Baker_0-395174.pdf"/> <dcterms:issued>2015-12</dcterms:issued> <dc:contributor>Poskar, C. Hart</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Utilizing kinetic models of biological systems commonly require computational approaches to estimate parameters, posing a variety of challenges due to their highly non-linear and dynamic nature, which is further complicated by the issue of non-identifiability. We propose a novel parameter estimation framework by combining approaches for solving identifiability with a recently introduced filtering technique that can uniquely estimate parameters where conventional methods fail. This framework first conducts a thorough analysis to identify and classify the non-identifiable parameters and provides a guideline for solving them. If no feasible solution can be found, the framework instead initializes the filtering technique with informed prior to yield a unique solution.</dcterms:abstract> <dc:contributor>Junker, Björn H.</dc:contributor> <dcterms:title>A unified framework for estimating parameters of kinetic biological models</dcterms:title> <dc:creator>Poskar, C. Hart</dc:creator> <dc:contributor>Schreiber, Falk</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0"/> <dc:creator>Baker, Syed Murtuza</dc:creator> </rdf:Description> </rdf:RDF>