Publikation: Stimulus classification with electrical potential and impedance of living plants : comparing discriminant analysis and deep-learning methods
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The physiology of living organisms, such as living plants, is complex and particularly difficult to understand on a macroscopic, organism-holistic level. Among the many options for studying plant physiology, electrical potential and tissue impedance are arguably simple measurement techniques that can be used to gather plant-level information. Despite the many possible uses, our research is exclusively driven by the idea of phytosensing, that is, interpreting living plants’ signals to gather information about surrounding environmental conditions. As ready-to-use plant-level physiological models are not available, we consider the plant as a blackbox and apply statistics and machine learning to automatically interpret measured signals. In simple plant experiments, we expose Zamioculcas zamiifolia and Solanum lycopersicum (tomato) to four different stimuli: wind, heat, red light and blue light. We measure electrical potential and tissue impedance signals. Given these signals, we evaluate a large variety of methods from statistical discriminant analysis and from deep learning, for the classification problem of determining the stimulus to which the plant was exposed. We identify a set of methods that successfully classify stimuli with good accuracy, without a clear winner. The statistical approach is competitive, partially depending on data availability for the machine learning approach. Our extensive results show the feasibility of the blackbox approach and can be used in future research to select appropriate classifier techniques for a given use case. In our own future research, we will exploit these methods to derive a phytosensing approach to monitoring air pollution in urban areas.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BUSS, Eduard, Till AUST, Mostafa WAHBY, Tim-Lucas RABBEL, Serge KERNBACH, Heiko HAMANN, 2023. Stimulus classification with electrical potential and impedance of living plants : comparing discriminant analysis and deep-learning methods. In: Bioinspiration & Biomimetics. IOP Publishing. 2023, 18(2), 025003. ISSN 1748-3182. eISSN 1748-3190. Verfügbar unter: doi: 10.1088/1748-3190/acbad2BibTex
@article{Buss2023-03-01Stimu-66555, title={Stimulus classification with electrical potential and impedance of living plants : comparing discriminant analysis and deep-learning methods}, year={2023}, doi={10.1088/1748-3190/acbad2}, number={2}, volume={18}, issn={1748-3182}, journal={Bioinspiration & Biomimetics}, author={Buss, Eduard and Aust, Till and Wahby, Mostafa and Rabbel, Tim-Lucas and Kernbach, Serge and Hamann, Heiko}, note={Article Number: 025003} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66555"> <dc:creator>Kernbach, Serge</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T12:27:06Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66555"/> <dc:contributor>Hamann, Heiko</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Kernbach, Serge</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66555/1/Buss_2-1vdnx94mmjgoi7.pdf"/> <dc:creator>Aust, Till</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Wahby, Mostafa</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66555/1/Buss_2-1vdnx94mmjgoi7.pdf"/> <dcterms:title>Stimulus classification with electrical potential and impedance of living plants : comparing discriminant analysis and deep-learning methods</dcterms:title> <dc:creator>Buss, Eduard</dc:creator> <dc:contributor>Buss, Eduard</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Rabbel, Tim-Lucas</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract>The physiology of living organisms, such as living plants, is complex and particularly difficult to understand on a macroscopic, organism-holistic level. Among the many options for studying plant physiology, electrical potential and tissue impedance are arguably simple measurement techniques that can be used to gather plant-level information. Despite the many possible uses, our research is exclusively driven by the idea of phytosensing, that is, interpreting living plants’ signals to gather information about surrounding environmental conditions. As ready-to-use plant-level physiological models are not available, we consider the plant as a blackbox and apply statistics and machine learning to automatically interpret measured signals. In simple plant experiments, we expose Zamioculcas zamiifolia and Solanum lycopersicum (tomato) to four different stimuli: wind, heat, red light and blue light. We measure electrical potential and tissue impedance signals. Given these signals, we evaluate a large variety of methods from statistical discriminant analysis and from deep learning, for the classification problem of determining the stimulus to which the plant was exposed. We identify a set of methods that successfully classify stimuli with good accuracy, without a clear winner. The statistical approach is competitive, partially depending on data availability for the machine learning approach. Our extensive results show the feasibility of the blackbox approach and can be used in future research to select appropriate classifier techniques for a given use case. In our own future research, we will exploit these methods to derive a phytosensing approach to monitoring air pollution in urban areas.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Wahby, Mostafa</dc:contributor> <dcterms:issued>2023-03-01</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T12:27:06Z</dcterms:available> <dc:contributor>Aust, Till</dc:contributor> <dc:creator>Rabbel, Tim-Lucas</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Hamann, Heiko</dc:creator> </rdf:Description> </rdf:RDF>