Publikation:

Stimulus classification with electrical potential and impedance of living plants : comparing discriminant analysis and deep-learning methods

Lade...
Vorschaubild

Dateien

Buss_2-1vdnx94mmjgoi7.pdf
Buss_2-1vdnx94mmjgoi7.pdfGröße: 3.33 MBDownloads: 50

Datum

2023

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Bioinspiration & Biomimetics. IOP Publishing. 2023, 18(2), 025003. ISSN 1748-3182. eISSN 1748-3190. Verfügbar unter: doi: 10.1088/1748-3190/acbad2

Zusammenfassung

The physiology of living organisms, such as living plants, is complex and particularly difficult to understand on a macroscopic, organism-holistic level. Among the many options for studying plant physiology, electrical potential and tissue impedance are arguably simple measurement techniques that can be used to gather plant-level information. Despite the many possible uses, our research is exclusively driven by the idea of phytosensing, that is, interpreting living plants’ signals to gather information about surrounding environmental conditions. As ready-to-use plant-level physiological models are not available, we consider the plant as a blackbox and apply statistics and machine learning to automatically interpret measured signals. In simple plant experiments, we expose Zamioculcas zamiifolia and Solanum lycopersicum (tomato) to four different stimuli: wind, heat, red light and blue light. We measure electrical potential and tissue impedance signals. Given these signals, we evaluate a large variety of methods from statistical discriminant analysis and from deep learning, for the classification problem of determining the stimulus to which the plant was exposed. We identify a set of methods that successfully classify stimuli with good accuracy, without a clear winner. The statistical approach is competitive, partially depending on data availability for the machine learning approach. Our extensive results show the feasibility of the blackbox approach and can be used in future research to select appropriate classifier techniques for a given use case. In our own future research, we will exploit these methods to derive a phytosensing approach to monitoring air pollution in urban areas.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

electrophysiology, electrical potential, tissue electrical impedance, phytosensing, discriminant analysis, artificial neural networks, time series classification

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BUSS, Eduard, Till AUST, Mostafa WAHBY, Tim-Lucas RABBEL, Serge KERNBACH, Heiko HAMANN, 2023. Stimulus classification with electrical potential and impedance of living plants : comparing discriminant analysis and deep-learning methods. In: Bioinspiration & Biomimetics. IOP Publishing. 2023, 18(2), 025003. ISSN 1748-3182. eISSN 1748-3190. Verfügbar unter: doi: 10.1088/1748-3190/acbad2
BibTex
@article{Buss2023-03-01Stimu-66555,
  title={Stimulus classification with electrical potential and impedance of living plants : comparing discriminant analysis and deep-learning methods},
  year={2023},
  doi={10.1088/1748-3190/acbad2},
  number={2},
  volume={18},
  issn={1748-3182},
  journal={Bioinspiration & Biomimetics},
  author={Buss, Eduard and Aust, Till and Wahby, Mostafa and Rabbel, Tim-Lucas and Kernbach, Serge and Hamann, Heiko},
  note={Article Number: 025003}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66555">
    <dc:creator>Kernbach, Serge</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T12:27:06Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66555"/>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Kernbach, Serge</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66555/1/Buss_2-1vdnx94mmjgoi7.pdf"/>
    <dc:creator>Aust, Till</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Wahby, Mostafa</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66555/1/Buss_2-1vdnx94mmjgoi7.pdf"/>
    <dcterms:title>Stimulus classification with electrical potential and impedance of living plants : comparing discriminant analysis and deep-learning methods</dcterms:title>
    <dc:creator>Buss, Eduard</dc:creator>
    <dc:contributor>Buss, Eduard</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Rabbel, Tim-Lucas</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract>The physiology of living organisms, such as living plants, is complex and particularly difficult to understand on a macroscopic, organism-holistic level. Among the many options for studying plant physiology, electrical potential and tissue impedance are arguably simple measurement techniques that can be used to gather plant-level information. Despite the many possible uses, our research is exclusively driven by the idea of phytosensing, that is, interpreting living plants’ signals to gather information about surrounding environmental conditions. As ready-to-use plant-level physiological models are not available, we consider the plant as a blackbox and apply statistics and machine learning to automatically interpret measured signals. In simple plant experiments, we expose Zamioculcas zamiifolia and Solanum lycopersicum (tomato) to four different stimuli: wind, heat, red light and blue light. We measure electrical potential and tissue impedance signals. Given these signals, we evaluate a large variety of methods from statistical discriminant analysis and from deep learning, for the classification problem of determining the stimulus to which the plant was exposed. We identify a set of methods that successfully classify stimuli with good accuracy, without a clear winner. The statistical approach is competitive, partially depending on data availability for the machine learning approach. Our extensive results show the feasibility of the blackbox approach and can be used in future research to select appropriate classifier techniques for a given use case. In our own future research, we will exploit these methods to derive a phytosensing approach to monitoring air pollution in urban areas.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Wahby, Mostafa</dc:contributor>
    <dcterms:issued>2023-03-01</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T12:27:06Z</dcterms:available>
    <dc:contributor>Aust, Till</dc:contributor>
    <dc:creator>Rabbel, Tim-Lucas</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Hamann, Heiko</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
The data that support the findings of this study
Diese Publikation teilen