Publikation: Learning precise local boundaries in images from human tracings
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Boundaries are the key cue to differentiate objects from each other and the background. However whether boundaries can be regarded as such cannot be determined generally as this highly depends on specific questions that need to be answered. As humans are best able to answer these questions and provide the required knowledge, it is often necessary to learn task-specific boundary properties from user-provided examples. However, current approaches to learning boundaries from examples completely ignore the inherent inaccuracy of human boundary tracings and, hence, derive an imprecise boundary description. We therefore provide an alternative view on supervised boundary learning and propose an efficient and robust algorithm to derive a precise boundary model for boundary detection.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HORN, Martin, Michael R. BERTHOLD, 2013. Learning precise local boundaries in images from human tracings. In: PETROSINO, Alfredo, ed.. Image Analysis and Processing – ICIAP 2013. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 131-140. Lecture Notes in Computer Science. 8156. ISBN 978-3-642-41180-9. Available under: doi: 10.1007/978-3-642-41181-6_14BibTex
@inproceedings{Horn2013Learn-26487, year={2013}, doi={10.1007/978-3-642-41181-6_14}, title={Learning precise local boundaries in images from human tracings}, number={8156}, isbn={978-3-642-41180-9}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Image Analysis and Processing – ICIAP 2013}, pages={131--140}, editor={Petrosino, Alfredo}, author={Horn, Martin and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26487"> <dc:contributor>Horn, Martin</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Learning precise local boundaries in images from human tracings</dcterms:title> <dcterms:issued>2013</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26487"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:abstract xml:lang="eng">Boundaries are the key cue to differentiate objects from each other and the background. However whether boundaries can be regarded as such cannot be determined generally as this highly depends on specific questions that need to be answered. As humans are best able to answer these questions and provide the required knowledge, it is often necessary to learn task-specific boundary properties from user-provided examples. However, current approaches to learning boundaries from examples completely ignore the inherent inaccuracy of human boundary tracings and, hence, derive an imprecise boundary description. We therefore provide an alternative view on supervised boundary learning and propose an efficient and robust algorithm to derive a precise boundary model for boundary detection.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26487/2/Horn_264876.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-26T12:28:40Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dcterms:bibliographicCitation>Image analysis and processing - ICIAP 2013 : 17th international conference ; Naples, Italy, September 9-13, 2013, Part I / Alfredo Petrosino (ed.). - Berlin : Springer, 2013. - S. 131-140. - (Lecture notes in computer science ; 8156). - ISBN 978-3-642-41180-9</dcterms:bibliographicCitation> <dc:creator>Horn, Martin</dc:creator> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-26T12:28:40Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26487/2/Horn_264876.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>