Publikation:

Learning precise local boundaries in images from human tracings

Lade...
Vorschaubild

Dateien

Horn_264876.pdf
Horn_264876.pdfGröße: 281.3 KBDownloads: 165

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

PETROSINO, Alfredo, ed.. Image Analysis and Processing – ICIAP 2013. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 131-140. Lecture Notes in Computer Science. 8156. ISBN 978-3-642-41180-9. Available under: doi: 10.1007/978-3-642-41181-6_14

Zusammenfassung

Boundaries are the key cue to differentiate objects from each other and the background. However whether boundaries can be regarded as such cannot be determined generally as this highly depends on specific questions that need to be answered. As humans are best able to answer these questions and provide the required knowledge, it is often necessary to learn task-specific boundary properties from user-provided examples. However, current approaches to learning boundaries from examples completely ignore the inherent inaccuracy of human boundary tracings and, hence, derive an imprecise boundary description. We therefore provide an alternative view on supervised boundary learning and propose an efficient and robust algorithm to derive a precise boundary model for boundary detection.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HORN, Martin, Michael R. BERTHOLD, 2013. Learning precise local boundaries in images from human tracings. In: PETROSINO, Alfredo, ed.. Image Analysis and Processing – ICIAP 2013. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 131-140. Lecture Notes in Computer Science. 8156. ISBN 978-3-642-41180-9. Available under: doi: 10.1007/978-3-642-41181-6_14
BibTex
@inproceedings{Horn2013Learn-26487,
  year={2013},
  doi={10.1007/978-3-642-41181-6_14},
  title={Learning precise local boundaries in images from human tracings},
  number={8156},
  isbn={978-3-642-41180-9},
  publisher={Springer Berlin Heidelberg},
  address={Berlin, Heidelberg},
  series={Lecture Notes in Computer Science},
  booktitle={Image Analysis and Processing – ICIAP 2013},
  pages={131--140},
  editor={Petrosino, Alfredo},
  author={Horn, Martin and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26487">
    <dc:contributor>Horn, Martin</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Learning precise local boundaries in images from human tracings</dcterms:title>
    <dcterms:issued>2013</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26487"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:abstract xml:lang="eng">Boundaries are the key cue to differentiate objects from each other and the background. However whether boundaries can be regarded as such cannot be determined generally as this highly depends on specific questions that need to be answered. As humans are best able to answer these questions and provide the required knowledge, it is often necessary to learn task-specific boundary properties from user-provided examples. However, current approaches to learning boundaries from examples completely ignore the inherent inaccuracy of human boundary tracings and, hence, derive an imprecise boundary description. We therefore provide an alternative view on supervised boundary learning and propose an efficient and robust algorithm to derive a precise boundary model for boundary detection.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26487/2/Horn_264876.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-26T12:28:40Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:bibliographicCitation>Image analysis and processing - ICIAP 2013 : 17th international conference ; Naples, Italy, September 9-13, 2013, Part I / Alfredo Petrosino (ed.). - Berlin : Springer, 2013. - S. 131-140. - (Lecture notes in computer science ; 8156). -  ISBN 978-3-642-41180-9</dcterms:bibliographicCitation>
    <dc:creator>Horn, Martin</dc:creator>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-26T12:28:40Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26487/2/Horn_264876.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen