Motif-Based Visual Analysis of Dynamic Networks

Loading...
Thumbnail Image
Date
2022
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
2022 IEEE Visualization in Data Science (VDS). - Piscataway, NJ : IEEE, 2022. - pp. 17-26. - ISBN 978-1-6654-5721-7
Abstract
Many data analysis problems rely on dynamic networks, such as social or communication network analyses. Providing a scalable overview of long sequences of such dynamic networks remains challenging due to the underlying large-scale data containing elusive topological changes. We propose two complementary pixel-based visualizations, which reflect occurrences of selected sub-networks (motifs) and provide a time-scalable overview of dynamic networks: a network-level census (motif significance profiles) linked with a node-level sub-network metric (graphlet degree vectors) views to reveal structural changes, trends, states, and outliers. The network census captures significantly occurring motifs compared to their expected occurrences in random networks and exposes structural changes in a dynamic network. The sub-network metrics display the local topological neighborhood of a node in a single network belonging to the dynamic network. The linked pixel-based visualizations allow exploring motifs in different-sized networks to analyze the changing structures within and across dynamic networks, for instance, to visually analyze the shape and rate of changes in the network topology. We describe the identification of visual patterns, also considering different reordering strategies to emphasize visual patterns. We demonstrate the approach's usefulness by a use case analysis based on real-world large-scale dynamic networks, such as the evolving social networks of Reddit or Facebook.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
2022 IEEE Visualization in Data Science (VDS), Oct 16, 2022 - Oct 17, 2022
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690CAKMAK, Eren, Johannes FUCHS, Dominik JÄCKLE, Tobias SCHRECK, Ulrik BRANDES, Daniel A. KEIM, 2022. Motif-Based Visual Analysis of Dynamic Networks. 2022 IEEE Visualization in Data Science (VDS), Oct 16, 2022 - Oct 17, 2022. In: 2022 IEEE Visualization in Data Science (VDS). Piscataway, NJ:IEEE, pp. 17-26. ISBN 978-1-6654-5721-7. Available under: doi: 10.1109/VDS57266.2022.00007
BibTex
@inproceedings{Cakmak2022-08-25T08:27:36ZMotif-58421,
  year={2022},
  doi={10.1109/VDS57266.2022.00007},
  title={Motif-Based Visual Analysis of Dynamic Networks},
  isbn={978-1-6654-5721-7},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2022 IEEE Visualization in Data Science (VDS)},
  pages={17--26},
  author={Cakmak, Eren and Fuchs, Johannes and Jäckle, Dominik and Schreck, Tobias and Brandes, Ulrik and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58421">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dc:contributor>Cakmak, Eren</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-30T10:17:31Z</dc:date>
    <dcterms:title>Motif-Based Visual Analysis of Dynamic Networks</dcterms:title>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:issued>2022-08-25T08:27:36Z</dcterms:issued>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58421"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Jäckle, Dominik</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58421/1/Cakmak_2-1vaxso6t4hzja4.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-30T10:17:31Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:creator>Jäckle, Dominik</dc:creator>
    <dcterms:abstract xml:lang="eng">Many data analysis problems rely on dynamic networks, such as social or communication network analyses. Providing a scalable overview of long sequences of such dynamic networks remains challenging due to the underlying large-scale data containing elusive topological changes. We propose two complementary pixel-based visualizations, which reflect occurrences of selected sub-networks (motifs) and provide a time-scalable overview of dynamic networks: a network-level census (motif significance profiles) linked with a node-level sub-network metric (graphlet degree vectors) views to reveal structural changes, trends, states, and outliers. The network census captures significantly occurring motifs compared to their expected occurrences in random networks and exposes structural changes in a dynamic network. The sub-network metrics display the local topological neighborhood of a node in a single network belonging to the dynamic network. The linked pixel-based visualizations allow exploring motifs in different-sized networks to analyze the changing structures within and across dynamic networks, for instance, to visually analyze the shape and rate of changes in the network topology. We describe the identification of visual patterns, also considering different reordering strategies to emphasize visual patterns. We demonstrate the approach's usefulness by a use case analysis based on real-world large-scale dynamic networks, such as the evolving social networks of Reddit or Facebook.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Cakmak, Eren</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Fuchs, Johannes</dc:contributor>
    <dc:creator>Fuchs, Johannes</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58421/1/Cakmak_2-1vaxso6t4hzja4.pdf"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed