Publikation:

Context vs. Human Disagreement in Sarcasm Detection

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the 4th Workshop on Figurative Language Processing (FigLang 2024). Kerrville, TX: Association for Computational Linguistics, 2024, S. 1-7. ISBN 979-8-89176-110-0. Verfügbar unter: doi: 10.18653/v1/2024.figlang-1.1

Zusammenfassung

Prior work has highlighted the importance of context in the identification of sarcasm by humans and language models. This work examines how much context is required for a better identification of sarcasm by both parties. We collect textual responses to dialogical prompts and sarcasm judgment to the responses placed after long contexts, short contexts, and no contexts. We find that both for humans and language models, the presence of context is generally important in identifying sarcasm in the response. But increasing the amount of context provides no added benefit to humans (long = short > none). This is the same for language models, but only on easily agreed-upon sentences; for sentences with disagreement among human evaluators, different models show different behavior. We also show how sarcasm detection patterns stay consistent as the amount of context is manipulated despite the low agreement in human evaluation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

4th Workshop on Figurative Language Processing (FigLang 2024), 21. Juni 2024 - 21. Juni 2024, Mexico City, Mexico (Hybrid)
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JANG, Hyewon, Moritz JAKOB, Diego FRASSINELLI, 2024. Context vs. Human Disagreement in Sarcasm Detection. 4th Workshop on Figurative Language Processing (FigLang 2024). Mexico City, Mexico (Hybrid), 21. Juni 2024 - 21. Juni 2024. In: Proceedings of the 4th Workshop on Figurative Language Processing (FigLang 2024). Kerrville, TX: Association for Computational Linguistics, 2024, S. 1-7. ISBN 979-8-89176-110-0. Verfügbar unter: doi: 10.18653/v1/2024.figlang-1.1
BibTex
@inproceedings{Jang2024Conte-71255,
  year={2024},
  doi={10.18653/v1/2024.figlang-1.1},
  title={Context vs. Human Disagreement in Sarcasm Detection},
  isbn={979-8-89176-110-0},
  publisher={Association for Computational Linguistics},
  address={Kerrville, TX},
  booktitle={Proceedings of the 4th Workshop on Figurative Language Processing (FigLang 2024)},
  pages={1--7},
  author={Jang, Hyewon and Jakob, Moritz and Frassinelli, Diego}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71255">
    <dc:contributor>Frassinelli, Diego</dc:contributor>
    <dcterms:title>Context vs. Human Disagreement in Sarcasm Detection</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-13T12:34:26Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-13T12:34:26Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2024</dcterms:issued>
    <dc:contributor>Jang, Hyewon</dc:contributor>
    <dc:creator>Jang, Hyewon</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71255"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:contributor>Jakob, Moritz</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:creator>Jakob, Moritz</dc:creator>
    <dcterms:abstract>Prior work has highlighted the importance of context in the identification of sarcasm by humans and language models. This work examines how much context is required for a better identification of sarcasm by both parties. We collect textual responses to dialogical prompts and sarcasm judgment to the responses placed after long contexts, short contexts, and no contexts. We find that both for humans and language models, the presence of context is generally important in identifying sarcasm in the response. But increasing the amount of context provides no added benefit to humans (long = short &gt; none). This is the same for language models, but only on easily agreed-upon sentences; for sentences with disagreement among human evaluators, different models show different behavior. We also show how sarcasm detection patterns stay consistent as the amount of context is manipulated despite the low agreement in human evaluation.</dcterms:abstract>
    <dc:creator>Frassinelli, Diego</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen