Publikation: Context vs. Human Disagreement in Sarcasm Detection
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Prior work has highlighted the importance of context in the identification of sarcasm by humans and language models. This work examines how much context is required for a better identification of sarcasm by both parties. We collect textual responses to dialogical prompts and sarcasm judgment to the responses placed after long contexts, short contexts, and no contexts. We find that both for humans and language models, the presence of context is generally important in identifying sarcasm in the response. But increasing the amount of context provides no added benefit to humans (long = short > none). This is the same for language models, but only on easily agreed-upon sentences; for sentences with disagreement among human evaluators, different models show different behavior. We also show how sarcasm detection patterns stay consistent as the amount of context is manipulated despite the low agreement in human evaluation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JANG, Hyewon, Moritz JAKOB, Diego FRASSINELLI, 2024. Context vs. Human Disagreement in Sarcasm Detection. 4th Workshop on Figurative Language Processing (FigLang 2024). Mexico City, Mexico (Hybrid), 21. Juni 2024 - 21. Juni 2024. In: Proceedings of the 4th Workshop on Figurative Language Processing (FigLang 2024). Kerrville, TX: Association for Computational Linguistics, 2024, S. 1-7. ISBN 979-8-89176-110-0. Verfügbar unter: doi: 10.18653/v1/2024.figlang-1.1BibTex
@inproceedings{Jang2024Conte-71255, year={2024}, doi={10.18653/v1/2024.figlang-1.1}, title={Context vs. Human Disagreement in Sarcasm Detection}, isbn={979-8-89176-110-0}, publisher={Association for Computational Linguistics}, address={Kerrville, TX}, booktitle={Proceedings of the 4th Workshop on Figurative Language Processing (FigLang 2024)}, pages={1--7}, author={Jang, Hyewon and Jakob, Moritz and Frassinelli, Diego} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71255"> <dc:contributor>Frassinelli, Diego</dc:contributor> <dcterms:title>Context vs. Human Disagreement in Sarcasm Detection</dcterms:title> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-13T12:34:26Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-13T12:34:26Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2024</dcterms:issued> <dc:contributor>Jang, Hyewon</dc:contributor> <dc:creator>Jang, Hyewon</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71255"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:contributor>Jakob, Moritz</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:creator>Jakob, Moritz</dc:creator> <dcterms:abstract>Prior work has highlighted the importance of context in the identification of sarcasm by humans and language models. This work examines how much context is required for a better identification of sarcasm by both parties. We collect textual responses to dialogical prompts and sarcasm judgment to the responses placed after long contexts, short contexts, and no contexts. We find that both for humans and language models, the presence of context is generally important in identifying sarcasm in the response. But increasing the amount of context provides no added benefit to humans (long = short > none). This is the same for language models, but only on easily agreed-upon sentences; for sentences with disagreement among human evaluators, different models show different behavior. We also show how sarcasm detection patterns stay consistent as the amount of context is manipulated despite the low agreement in human evaluation.</dcterms:abstract> <dc:creator>Frassinelli, Diego</dc:creator> </rdf:Description> </rdf:RDF>