Publikation: Highly absorbing solar cells - a survey of plasmonic nanostructures
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Plasmonic light trapping in thin film solar cells is investigated using full-wave electromagnetic simulations. Light absorption in the semiconductor layer with three standard plasmonic solar cell geometries is compared to absorption in a flat layer. We identify near-field absorption enhancement due to the excitation of localized surface plasmons but find that it is not necessary for strong light trapping in these configurations: significant enhancements are also found if the real metal is replaced by a perfect conductor, where scattering is the only available enhancement mechanism. The absorption in a 60 nm thick organic semiconductor film is found to be enhanced by up to 19% using dispersed silver nanoparticles, and up to 13% using a nanostructured electrode. External in-scattering nanoparticles strongly limit semiconductor absorption via back-reflection.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DUNBAR, Ricky B., Thomas PFADLER, Lukas SCHMIDT-MENDE, 2012. Highly absorbing solar cells - a survey of plasmonic nanostructures. In: Optics Express. 2012, 20(S2), pp. A177-A189. eISSN 1094-4087. Available under: doi: 10.1364/OE.20.00A177BibTex
@article{Dunbar2012-03-12Highl-22128,
year={2012},
doi={10.1364/OE.20.00A177},
title={Highly absorbing solar cells - a survey of plasmonic nanostructures},
number={S2},
volume={20},
journal={Optics Express},
pages={A177--A189},
author={Dunbar, Ricky B. and Pfadler, Thomas and Schmidt-Mende, Lukas}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22128">
<dc:rights>terms-of-use</dc:rights>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-07T10:27:26Z</dcterms:available>
<dc:creator>Pfadler, Thomas</dc:creator>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dcterms:issued>2012-03-12</dcterms:issued>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-07T10:27:26Z</dc:date>
<dcterms:bibliographicCitation>Optics Express ; 20 (2012), S2. - S. A177-A189</dcterms:bibliographicCitation>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22128/1/dunbar_221285.pdf"/>
<dc:contributor>Pfadler, Thomas</dc:contributor>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:contributor>Schmidt-Mende, Lukas</dc:contributor>
<dcterms:abstract>Plasmonic light trapping in thin film solar cells is investigated using full-wave electromagnetic simulations. Light absorption in the semiconductor layer with three standard plasmonic solar cell geometries is compared to absorption in a flat layer. We identify near-field absorption enhancement due to the excitation of localized surface plasmons but find that it is not necessary for strong light trapping in these configurations: significant enhancements are also found if the real metal is replaced by a perfect conductor, where scattering is the only available enhancement mechanism. The absorption in a 60 nm thick organic semiconductor film is found to be enhanced by up to 19% using dispersed silver nanoparticles, and up to 13% using a nanostructured electrode. External in-scattering nanoparticles strongly limit semiconductor absorption via back-reflection.</dcterms:abstract>
<bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22128"/>
<dc:contributor>Dunbar, Ricky B.</dc:contributor>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22128/1/dunbar_221285.pdf"/>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dc:creator>Dunbar, Ricky B.</dc:creator>
<dc:language>eng</dc:language>
<dcterms:title>Highly absorbing solar cells - a survey of plasmonic nanostructures</dcterms:title>
<dc:creator>Schmidt-Mende, Lukas</dc:creator>
</rdf:Description>
</rdf:RDF>