Publikation: Factorizing Markov models for categorical time series prediction
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2011
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
SIMOS, Theodore E., ed. and others. Numerical analysis and applied mathematics : ICNAAM. Melville, N.Y: AIP, 2011, pp. 405-409. AIP Conference Proceedings. 1389. ISBN 978-0-7354-0956-9. Available under: doi: 10.1063/1.3636749
Zusammenfassung
During the last decade, recommender systems became a popular class of models for many commercial websites. One of the best state‐of‐the‐art methods for recommender systems are Matrix and Tensor Factorization models. Besides, Markov Chain models are common for representing sequential data problems (e.g. categorical time series data). The item recommendation problem of recommender systems in fact is a categorical time series problem where each user represents an individual categorical time series. In this paper we combine factorization models with Markov Chain models. To increase efficiency of parameter estimation we introduce our generalized Factorized Markov Chain model.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Markov processes, time series, Web sites, probability
Konferenz
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics, 19. Sept. 2011 - 25. Sept. 2011, Halkidiki, (Greece)
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
FREUDENTHALER, Christoph, Steffen RENDLE, Lars SCHMIDT-THIEME, 2011. Factorizing Markov models for categorical time series prediction. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. Halkidiki, (Greece), 19. Sept. 2011 - 25. Sept. 2011. In: SIMOS, Theodore E., ed. and others. Numerical analysis and applied mathematics : ICNAAM. Melville, N.Y: AIP, 2011, pp. 405-409. AIP Conference Proceedings. 1389. ISBN 978-0-7354-0956-9. Available under: doi: 10.1063/1.3636749BibTex
@inproceedings{Freudenthaler2011Facto-19349, year={2011}, doi={10.1063/1.3636749}, title={Factorizing Markov models for categorical time series prediction}, number={1389}, isbn={978-0-7354-0956-9}, publisher={AIP}, address={Melville, N.Y}, series={AIP Conference Proceedings}, booktitle={Numerical analysis and applied mathematics : ICNAAM}, pages={405--409}, editor={Simos, Theodore E.}, author={Freudenthaler, Christoph and Rendle, Steffen and Schmidt-Thieme, Lars} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19349"> <dcterms:abstract xml:lang="eng">During the last decade, recommender systems became a popular class of models for many commercial websites. One of the best state‐of‐the‐art methods for recommender systems are Matrix and Tensor Factorization models. Besides, Markov Chain models are common for representing sequential data problems (e.g. categorical time series data). The item recommendation problem of recommender systems in fact is a categorical time series problem where each user represents an individual categorical time series. In this paper we combine factorization models with Markov Chain models. To increase efficiency of parameter estimation we introduce our generalized Factorized Markov Chain model.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>Publ. in: Numerical analysis and applied mathematics : ICNAAM 2011, International Conference on Numerical Analysis and Applied Mathematics, Halkidiki, Greece, 19-25 September 2011 / editor: Theodore E. Simos ... (Eds.). - Melville, N.Y : American Institute of Physics, 2011. - S. 405-409. - (AIP Conference Proceedings ; 1389). - ISBN 978-0-7354-0956-9</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-23T09:38:48Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Factorizing Markov models for categorical time series prediction</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-23T09:38:48Z</dc:date> <dc:contributor>Schmidt-Thieme, Lars</dc:contributor> <dc:contributor>Freudenthaler, Christoph</dc:contributor> <dc:creator>Schmidt-Thieme, Lars</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2011</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19349"/> <dc:contributor>Rendle, Steffen</dc:contributor> <dc:creator>Freudenthaler, Christoph</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Rendle, Steffen</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja