Publikation:

Bias-aware news analysis using matrix-based news aggregation

Lade...
Vorschaubild

Dateien

Hamborg_2-1umzmo61l2wlf0.pdf
Hamborg_2-1umzmo61l2wlf0.pdfGröße: 1.06 MBDownloads: 425

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal on Digital Libraries. Springer. 2020, 21(2), pp. 129-147. ISSN 1432-5012. eISSN 1432-1300. Available under: doi: 10.1007/s00799-018-0239-9

Zusammenfassung

Media bias describes differences in the content or presentation of news. It is an ubiquitous phenomenon in news coverage that can have severely negative effects on individuals and society. Identifying media bias is a challenging problem, for which current information systems offer little support. News aggregators are the most important class of systems to support users in coping with the large amount of news that is published nowadays. These systems focus on identifying and presenting important, common information in news articles, but do not reveal different perspectives on the same topic. Due to this analysis approach, current news aggregators cannot effectively reveal media bias. To address this problem, we present matrix-based news aggregation, a novel approach for news exploration that helps users gain a broad and diverse news understanding by presenting various perspectives on the same news topic. Additionally, we present NewsBird, an open-source news aggregator that implements matrix-based news aggregation for international news topics. The results of a user study showed that NewsBird more effectively broadens the user’s news understanding than the list-based visualization approach employed by established news aggregators, while achieving comparable effectiveness and efficiency for the two main use cases of news consumption: getting an overview of and finding details on current news topics.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Media bias, News aggregation, Frame analysis, Google News

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAMBORG, Felix, Norman MEUSCHKE, Bela GIPP, 2020. Bias-aware news analysis using matrix-based news aggregation. In: International Journal on Digital Libraries. Springer. 2020, 21(2), pp. 129-147. ISSN 1432-5012. eISSN 1432-1300. Available under: doi: 10.1007/s00799-018-0239-9
BibTex
@article{Hamborg2020-06Biasa-43180,
  year={2020},
  doi={10.1007/s00799-018-0239-9},
  title={Bias-aware news analysis using matrix-based news aggregation},
  number={2},
  volume={21},
  issn={1432-5012},
  journal={International Journal on Digital Libraries},
  pages={129--147},
  author={Hamborg, Felix and Meuschke, Norman and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43180">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Meuschke, Norman</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2020-06</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Media bias describes differences in the content or presentation of news. It is an ubiquitous phenomenon in news coverage that can have severely negative effects on individuals and society. Identifying media bias is a challenging problem, for which current information systems offer little support. News aggregators are the most important class of systems to support users in coping with the large amount of news that is published nowadays. These systems focus on identifying and presenting important, common information in news articles, but do not reveal different perspectives on the same topic. Due to this analysis approach, current news aggregators cannot effectively reveal media bias. To address this problem, we present matrix-based news aggregation, a novel approach for news exploration that helps users gain a broad and diverse news understanding by presenting various perspectives on the same news topic. Additionally, we present NewsBird, an open-source news aggregator that implements matrix-based news aggregation for international news topics. The results of a user study showed that NewsBird more effectively broadens the user’s news understanding than the list-based visualization approach employed by established news aggregators, while achieving comparable effectiveness and efficiency for the two main use cases of news consumption: getting an overview of and finding details on current news topics.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43180/1/Hamborg_2-1umzmo61l2wlf0.pdf"/>
    <dc:creator>Gipp, Bela</dc:creator>
    <dc:creator>Hamborg, Felix</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43180"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:creator>Meuschke, Norman</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43180/1/Hamborg_2-1umzmo61l2wlf0.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-06T07:29:43Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-06T07:29:43Z</dc:date>
    <dcterms:title>Bias-aware news analysis using matrix-based news aggregation</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen