Bias-aware news analysis using matrix-based news aggregation

Lade...
Vorschaubild
Dateien
Hamborg_2-1umzmo61l2wlf0.pdf
Hamborg_2-1umzmo61l2wlf0.pdfGröße: 1.06 MBDownloads: 403
Datum
2020
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
International Journal on Digital Libraries. Springer. 2020, 21(2), pp. 129-147. ISSN 1432-5012. eISSN 1432-1300. Available under: doi: 10.1007/s00799-018-0239-9
Zusammenfassung

Media bias describes differences in the content or presentation of news. It is an ubiquitous phenomenon in news coverage that can have severely negative effects on individuals and society. Identifying media bias is a challenging problem, for which current information systems offer little support. News aggregators are the most important class of systems to support users in coping with the large amount of news that is published nowadays. These systems focus on identifying and presenting important, common information in news articles, but do not reveal different perspectives on the same topic. Due to this analysis approach, current news aggregators cannot effectively reveal media bias. To address this problem, we present matrix-based news aggregation, a novel approach for news exploration that helps users gain a broad and diverse news understanding by presenting various perspectives on the same news topic. Additionally, we present NewsBird, an open-source news aggregator that implements matrix-based news aggregation for international news topics. The results of a user study showed that NewsBird more effectively broadens the user’s news understanding than the list-based visualization approach employed by established news aggregators, while achieving comparable effectiveness and efficiency for the two main use cases of news consumption: getting an overview of and finding details on current news topics.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Media bias, News aggregation, Frame analysis, Google News
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HAMBORG, Felix, Norman MEUSCHKE, Bela GIPP, 2020. Bias-aware news analysis using matrix-based news aggregation. In: International Journal on Digital Libraries. Springer. 2020, 21(2), pp. 129-147. ISSN 1432-5012. eISSN 1432-1300. Available under: doi: 10.1007/s00799-018-0239-9
BibTex
@article{Hamborg2020-06Biasa-43180,
  year={2020},
  doi={10.1007/s00799-018-0239-9},
  title={Bias-aware news analysis using matrix-based news aggregation},
  number={2},
  volume={21},
  issn={1432-5012},
  journal={International Journal on Digital Libraries},
  pages={129--147},
  author={Hamborg, Felix and Meuschke, Norman and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43180">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Meuschke, Norman</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2020-06</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Media bias describes differences in the content or presentation of news. It is an ubiquitous phenomenon in news coverage that can have severely negative effects on individuals and society. Identifying media bias is a challenging problem, for which current information systems offer little support. News aggregators are the most important class of systems to support users in coping with the large amount of news that is published nowadays. These systems focus on identifying and presenting important, common information in news articles, but do not reveal different perspectives on the same topic. Due to this analysis approach, current news aggregators cannot effectively reveal media bias. To address this problem, we present matrix-based news aggregation, a novel approach for news exploration that helps users gain a broad and diverse news understanding by presenting various perspectives on the same news topic. Additionally, we present NewsBird, an open-source news aggregator that implements matrix-based news aggregation for international news topics. The results of a user study showed that NewsBird more effectively broadens the user’s news understanding than the list-based visualization approach employed by established news aggregators, while achieving comparable effectiveness and efficiency for the two main use cases of news consumption: getting an overview of and finding details on current news topics.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43180/1/Hamborg_2-1umzmo61l2wlf0.pdf"/>
    <dc:creator>Gipp, Bela</dc:creator>
    <dc:creator>Hamborg, Felix</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43180"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:creator>Meuschke, Norman</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43180/1/Hamborg_2-1umzmo61l2wlf0.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-06T07:29:43Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-06T07:29:43Z</dc:date>
    <dcterms:title>Bias-aware news analysis using matrix-based news aggregation</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen