Publikation: Konx : cross-resolution image quality assessment
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 251654672
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Scale-invariance is an open problem in many computer vision subfields. For example, object labels should remain constant across scales, yet model predictions diverge in many cases. This problem gets harder for tasks where the ground-truth labels change with the presentation scale. In image quality assessment (IQA), down-sampling attenuates impairments, e.g., blurs or compression artifacts, which can positively affect the impression evoked in subjective studies. To accurately predict perceptual image quality, cross-resolution IQA methods must therefore account for resolution-dependent discrepancies induced by model inadequacies as well as for the perceptual label shifts in the ground truth. We present the first study of its kind that disentangles and examines the two issues separately via KonX , a novel, carefully crafted cross-resolution IQA database. This paper contributes the following: 1. Through KonX , we provide empirical evidence of label shifts caused by changes in the presentation resolution. 2. We show that objective IQA methods have a scale bias, which reduces their predictive performance. 3. We propose a multi-scale and multi-column deep neural network architecture that improves performance over previous state-of-the-art IQA models for this task. We thus both raise and address a novel research problem in image quality assessment.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WIEDEMANN, Oliver, Vlad HOSU, Shaolin SU, Dietmar SAUPE, 2023. Konx : cross-resolution image quality assessment. In: Quality and User Experience. Springer. 2023, 8, 8. ISSN 2366-0139. eISSN 2366-0147. Available under: doi: 10.1007/s41233-023-00061-8BibTex
@article{Wiedemann2023-08-18cross-68952, year={2023}, doi={10.1007/s41233-023-00061-8}, title={Konx : cross-resolution image quality assessment}, volume={8}, issn={2366-0139}, journal={Quality and User Experience}, author={Wiedemann, Oliver and Hosu, Vlad and Su, Shaolin and Saupe, Dietmar}, note={Article Number: 8} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68952"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Wiedemann, Oliver</dc:creator> <dc:contributor>Hosu, Vlad</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:creator>Su, Shaolin</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-05T11:35:31Z</dc:date> <dcterms:title>Konx : cross-resolution image quality assessment</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-05T11:35:31Z</dcterms:available> <dc:contributor>Su, Shaolin</dc:contributor> <dc:contributor>Saupe, Dietmar</dc:contributor> <dcterms:abstract>Scale-invariance is an open problem in many computer vision subfields. For example, object labels should remain constant across scales, yet model predictions diverge in many cases. This problem gets harder for tasks where the ground-truth labels change with the presentation scale. In image quality assessment (IQA), down-sampling attenuates impairments, e.g., blurs or compression artifacts, which can positively affect the impression evoked in subjective studies. To accurately predict perceptual image quality, cross-resolution IQA methods must therefore account for resolution-dependent discrepancies induced by model inadequacies as well as for the perceptual label shifts in the ground truth. We present the first study of its kind that disentangles and examines the two issues separately via KonX , a novel, carefully crafted cross-resolution IQA database. This paper contributes the following: 1. Through KonX , we provide empirical evidence of label shifts caused by changes in the presentation resolution. 2. We show that objective IQA methods have a scale bias, which reduces their predictive performance. 3. We propose a multi-scale and multi-column deep neural network architecture that improves performance over previous state-of-the-art IQA models for this task. We thus both raise and address a novel research problem in image quality assessment.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68952/1/Wiedemann_2-1ujtqtmltl05g9.pdf"/> <dc:contributor>Wiedemann, Oliver</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Hosu, Vlad</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68952"/> <dc:creator>Saupe, Dietmar</dc:creator> <dcterms:issued>2023-08-18</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68952/1/Wiedemann_2-1ujtqtmltl05g9.pdf"/> <dc:rights>Attribution 4.0 International</dc:rights> </rdf:Description> </rdf:RDF>