Publikation:

Spatio-temporal clustering

Lade...
Vorschaubild

Dateien

Kisilevich_Spatio-temporal.pdf
Kisilevich_Spatio-temporal.pdfGröße: 8.35 MBDownloads: 3894

Datum

2009

Autor:innen

Nanni, Mirco
Rinzivillo, Salvatore

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

MAIMON, Oded, ed., Lior ROKACH, ed.. Data Mining and Knowledge Discovery Handbook. Boston, MA: Springer US, 2009, pp. 855-874. ISBN 978-0-387-09822-7. Available under: doi: 10.1007/978-0-387-09823-4_44

Zusammenfassung

Spatio-temporal clustering is a process of grouping objects based on their spatial and temporal similarity. It is relatively new subfield of data mining which gained high popularity especially in geographic information sciences due to the pervasiveness of all kinds of location-based or environmental devices that record position, time or/and environmental properties of an object or set of objects in real-time. As a consequence, different types and large amounts of spatio-temporal data became available that introduce new challenges to data analysis and require novel approaches to knowledge discovery. In this chapter we concentrate on the spatio-temporal clustering in geographic space. First, we provide a classification of different types of spatio-temporal data. Then, we focus on one type of spatio-temporal clustering - trajectory clustering, provide an overview of the state-of-the-art approaches and methods of spatio-temporal clustering and finally present several scenarios in different application domains such as movement, cellular networks and environmental studies.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KISILEVICH, Slava, Florian MANSMANN, Mirco NANNI, Salvatore RINZIVILLO, 2009. Spatio-temporal clustering. In: MAIMON, Oded, ed., Lior ROKACH, ed.. Data Mining and Knowledge Discovery Handbook. Boston, MA: Springer US, 2009, pp. 855-874. ISBN 978-0-387-09822-7. Available under: doi: 10.1007/978-0-387-09823-4_44
BibTex
@incollection{Kisilevich2009Spati-12710,
  year={2009},
  doi={10.1007/978-0-387-09823-4_44},
  title={Spatio-temporal clustering},
  isbn={978-0-387-09822-7},
  publisher={Springer US},
  address={Boston, MA},
  booktitle={Data Mining and Knowledge Discovery Handbook},
  pages={855--874},
  editor={Maimon, Oded and Rokach, Lior},
  author={Kisilevich, Slava and Mansmann, Florian and Nanni, Mirco and Rinzivillo, Salvatore}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12710">
    <dc:creator>Rinzivillo, Salvatore</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: Data Mining and Knowledge Discovery Handbook / Oded Maimon... (eds.). - New York : Springer, 2010. - 2. Ed.. - pp. 855-874</dcterms:bibliographicCitation>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12710"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Mansmann, Florian</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-07T06:20:48Z</dcterms:available>
    <dc:creator>Kisilevich, Slava</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12710/2/Kisilevich_Spatio-temporal.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-07T06:20:48Z</dc:date>
    <dcterms:issued>2009</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12710/2/Kisilevich_Spatio-temporal.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Mansmann, Florian</dc:creator>
    <dc:contributor>Rinzivillo, Salvatore</dc:contributor>
    <dc:contributor>Kisilevich, Slava</dc:contributor>
    <dcterms:title>Spatio-temporal clustering</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Nanni, Mirco</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Nanni, Mirco</dc:creator>
    <dcterms:abstract xml:lang="eng">Spatio-temporal clustering is a process of grouping objects based on their spatial and temporal similarity. It is relatively new subfield of data mining which gained high popularity especially in geographic information sciences due to the pervasiveness of all kinds of location-based or environmental devices that record position, time or/and environmental properties of an object or set of objects in real-time. As a consequence, different types and large amounts of spatio-temporal data became available that introduce new challenges to data analysis and require novel approaches to knowledge discovery. In this chapter we concentrate on the spatio-temporal clustering in geographic space. First, we provide a classification of different types of spatio-temporal data. Then, we focus on one type of spatio-temporal clustering - trajectory clustering, provide an overview of the state-of-the-art approaches and methods of spatio-temporal clustering and finally present several scenarios in different application domains such as movement, cellular networks and environmental studies.</dcterms:abstract>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen