Publikation:

Long lived transients in gene regulation

Lade...
Vorschaubild

Dateien

Petrov_2-1uf5e49e7ocli5.pdf
Petrov_2-1uf5e49e7ocli5.pdfGröße: 2.47 MBDownloads: 154

Datum

2021

Autor:innen

Igler, Claudia
Sezgin, Ali
Henzinger, Thomas A.
Guet, Calin C.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Theoretical Computer Science. Elsevier. 2021, 893, pp. 1-16. ISSN 0304-3975. eISSN 1879-2294. Available under: doi: 10.1016/j.tcs.2021.05.023

Zusammenfassung

Gene expression is regulated by the set of transcription factors (TFs) that bind to the promoter. The ensuing regulating function is often represented as a combinational logic circuit, where output (gene expression) is determined by current input values (promoter bound TFs) only. However, the simultaneous arrival of TFs is a strong assumption, since transcription and translation of genes introduce intrinsic time delays and there is no global synchronization among the arrival times of different molecular species at their targets. We present an experimentally implementable genetic circuit with two inputs and one output, which in the presence of small delays in input arrival, exhibits qualitatively distinct population-level phenotypes, over timescales that are longer than typical cell doubling times. From a dynamical systems point of view, these phenotypes represent long-lived transients: although they converge to the same value eventually, they do so after a very long time span. The key feature of this toy model genetic circuit is that, despite having only two inputs and one output, it is regulated by twenty-three distinct DNA-TF configurations, two of which are more stable than others (DNA looped states), one promoting and another blocking the expression of the output gene. Small delays in input arrival time result in a majority of cells in the population quickly reaching the stable state associated with the first input, while exiting of this stable state occurs at a slow timescale. In order to mechanistically model the behavior of this genetic circuit, we used a rule-based modelling language, and implemented a grid-search to find parameter combinations giving rise to long-lived transients. Our analysis shows that in the absence of feedback, there exist path-dependent gene regulatory mechanisms based on the long timescale of transients. The behavior of this toy model circuit suggests that gene regulatory networks can exploit event timing to create phenotypes, and it opens the possibility that they could use event timing to memorize events, without regulatory feedback. The model reveals the importance of (i) mechanistically modelling the transitions between the different DNA-TF states, and (ii) employing transient analysis thereof.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Gene regulation, Stochastic modelling, Transient memory, Long lived transients, Finite state dynamical systems, DNA looping, Rule-based modelling

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PETROV, Tatjana, Claudia IGLER, Ali SEZGIN, Thomas A. HENZINGER, Calin C. GUET, 2021. Long lived transients in gene regulation. In: Theoretical Computer Science. Elsevier. 2021, 893, pp. 1-16. ISSN 0304-3975. eISSN 1879-2294. Available under: doi: 10.1016/j.tcs.2021.05.023
BibTex
@article{Petrov2021-11lived-54514,
  year={2021},
  doi={10.1016/j.tcs.2021.05.023},
  title={Long lived transients in gene regulation},
  volume={893},
  issn={0304-3975},
  journal={Theoretical Computer Science},
  pages={1--16},
  author={Petrov, Tatjana and Igler, Claudia and Sezgin, Ali and Henzinger, Thomas A. and Guet, Calin C.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54514">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-09T09:21:31Z</dc:date>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:creator>Sezgin, Ali</dc:creator>
    <dc:contributor>Henzinger, Thomas A.</dc:contributor>
    <dc:contributor>Igler, Claudia</dc:contributor>
    <dcterms:abstract xml:lang="eng">Gene expression is regulated by the set of transcription factors (TFs) that bind to the promoter. The ensuing regulating function is often represented as a combinational logic circuit, where output (gene expression) is determined by current input values (promoter bound TFs) only. However, the simultaneous arrival of TFs is a strong assumption, since transcription and translation of genes introduce intrinsic time delays and there is no global synchronization among the arrival times of different molecular species at their targets. We present an experimentally implementable genetic circuit with two inputs and one output, which in the presence of small delays in input arrival, exhibits qualitatively distinct population-level phenotypes, over timescales that are longer than typical cell doubling times. From a dynamical systems point of view, these phenotypes represent long-lived transients: although they converge to the same value eventually, they do so after a very long time span. The key feature of this toy model genetic circuit is that, despite having only two inputs and one output, it is regulated by twenty-three distinct DNA-TF configurations, two of which are more stable than others (DNA looped states), one promoting and another blocking the expression of the output gene. Small delays in input arrival time result in a majority of cells in the population quickly reaching the stable state associated with the first input, while exiting of this stable state occurs at a slow timescale. In order to mechanistically model the behavior of this genetic circuit, we used a rule-based modelling language, and implemented a grid-search to find parameter combinations giving rise to long-lived transients. Our analysis shows that in the absence of feedback, there exist path-dependent gene regulatory mechanisms based on the long timescale of transients. The behavior of this toy model circuit suggests that gene regulatory networks can exploit event timing to create phenotypes, and it opens the possibility that they could use event timing to memorize events, without regulatory feedback. The model reveals the importance of (i) mechanistically modelling the transitions between the different DNA-TF states, and (ii) employing transient analysis thereof.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54514"/>
    <dc:creator>Guet, Calin C.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:title>Long lived transients in gene regulation</dcterms:title>
    <dc:contributor>Guet, Calin C.</dc:contributor>
    <dc:contributor>Sezgin, Ali</dc:contributor>
    <dc:creator>Henzinger, Thomas A.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Igler, Claudia</dc:creator>
    <dc:creator>Petrov, Tatjana</dc:creator>
    <dcterms:issued>2021-11</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-09T09:21:31Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54514/1/Petrov_2-1uf5e49e7ocli5.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54514/1/Petrov_2-1uf5e49e7ocli5.pdf"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen