Community Detection in Partially Observable Social Networks

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2022
Autor:innen
Tran, Cong
Shin, Won-Yong
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

The discovery of community structures in social networks has gained significant attention since it is a fundamental problem in understanding the networks’ topology and functions. However, most social network data are collected from partially observable networks with both missing nodes and edges. In this article, we address a new problem of detecting overlapping community structures in the context of such an incomplete network, where communities in the network are allowed to overlap since nodes belong to multiple communities at once. To solve this problem, we introduce KroMFac, a new framework that conducts community detection via regularized nonnegative matrix factorization (NMF) based on the Kronecker graph model. Specifically, from an inferred Kronecker generative parameter matrix, we first estimate the missing part of the network. As our major contribution to the proposed framework, to improve community detection accuracy, we then characterize and select influential nodes (which tend to have high degrees) by ranking, and add them to the existing graph. Finally, we uncover the community structures by solving the regularized NMF-aided optimization problem in terms of maximizing the likelihood of the underlying graph. Furthermore, adopting normalized mutual information (NMI), we empirically show superiority of our KroMFac approach over two baseline schemes by using both synthetic and real-world networks.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690TRAN, Cong, Won-Yong SHIN, Andreas SPITZ, 2022. Community Detection in Partially Observable Social Networks. In: ACM Transactions on Knowledge Discovery from Data. Association for Computing Machinery (ACM). 2022, 16(2), 22. ISSN 1556-4681. eISSN 1556-472X. Available under: doi: 10.1145/3461339
BibTex
@article{Tran2022Commu-55113,
  year={2022},
  doi={10.1145/3461339},
  title={Community Detection in Partially Observable Social Networks},
  number={2},
  volume={16},
  issn={1556-4681},
  journal={ACM Transactions on Knowledge Discovery from Data},
  author={Tran, Cong and Shin, Won-Yong and Spitz, Andreas},
  note={Article Number: 22}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55113">
    <dcterms:issued>2022</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">The discovery of community structures in social networks has gained significant attention since it is a fundamental problem in understanding the networks’ topology and functions. However, most social network data are collected from partially observable networks with both missing nodes and edges. In this article, we address a new problem of detecting overlapping community structures in the context of such an incomplete network, where communities in the network are allowed to overlap since nodes belong to multiple communities at once. To solve this problem, we introduce KroMFac, a new framework that conducts community detection via regularized nonnegative matrix factorization (NMF) based on the Kronecker graph model. Specifically, from an inferred Kronecker generative parameter matrix, we first estimate the missing part of the network. As our major contribution to the proposed framework, to improve community detection accuracy, we then characterize and select influential nodes (which tend to have high degrees) by ranking, and add them to the existing graph. Finally, we uncover the community structures by solving the regularized NMF-aided optimization problem in terms of maximizing the likelihood of the underlying graph. Furthermore, adopting normalized mutual information (NMI), we empirically show superiority of our KroMFac approach over two baseline schemes by using both synthetic and real-world networks.</dcterms:abstract>
    <dc:creator>Shin, Won-Yong</dc:creator>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-01T07:49:25Z</dcterms:available>
    <dc:contributor>Tran, Cong</dc:contributor>
    <dc:creator>Spitz, Andreas</dc:creator>
    <dcterms:title>Community Detection in Partially Observable Social Networks</dcterms:title>
    <dc:creator>Tran, Cong</dc:creator>
    <dc:contributor>Shin, Won-Yong</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-01T07:49:25Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55113"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen