Publikation: An elliptic boundary problem acting on generalized Sobolev spaces
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider an elliptic boundary problem over a bounded region Ω in Rn and acting on the generalized Sobolev space W0,χp(Ω) for 1<p<∞. We note that similar problems for Ω either a bounded region in Rn or a closed manifold acting on W0,χ2(Ω), called H"{o}rmander space, have been the subject of investigation by various authors. Then in this paper we will, under the assumption of parameter-ellipticity, establish results pertaining to the existence and uniqueness of solutions of the boundary problem. Furthermore, under the further assumption that the boundary conditions are null, we will establish results pertaining to the spectral properties of the Banach space operator induced by the boundary problem, and in particular, to the angular and asymptotic distribution of its eigenvalues.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DENK, Robert, Melvin FAIERMAN, 2017. An elliptic boundary problem acting on generalized Sobolev spacesBibTex
@techreport{Denk2017-10-05T10:47:25Zellip-40438, year={2017}, series={Konstanzer Schriften in Mathematik}, title={An elliptic boundary problem acting on generalized Sobolev spaces}, number={366}, author={Denk, Robert and Faierman, Melvin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40438"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-27T08:42:05Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40438/3/Denk_2-1u84ywg6aig2f7.pdf"/> <dc:contributor>Denk, Robert</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Denk, Robert</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40438"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">We consider an elliptic boundary problem over a bounded region Ω in R<sup>n</sup> and acting on the generalized Sobolev space W<sup>0</sup>,χ<sub>p</sub>(Ω) for 1<p<∞. We note that similar problems for Ω either a bounded region in R<sup>n</sup> or a closed manifold acting on W<sup>0</sup>,χ<sub>2</sub>(Ω), called H\"{o}rmander space, have been the subject of investigation by various authors. Then in this paper we will, under the assumption of parameter-ellipticity, establish results pertaining to the existence and uniqueness of solutions of the boundary problem. Furthermore, under the further assumption that the boundary conditions are null, we will establish results pertaining to the spectral properties of the Banach space operator induced by the boundary problem, and in particular, to the angular and asymptotic distribution of its eigenvalues.</dcterms:abstract> <dc:contributor>Faierman, Melvin</dc:contributor> <dc:creator>Faierman, Melvin</dc:creator> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>An elliptic boundary problem acting on generalized Sobolev spaces</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40438/3/Denk_2-1u84ywg6aig2f7.pdf"/> <dcterms:issued>2017-10-05T10:47:25Z</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-27T08:42:05Z</dcterms:available> </rdf:Description> </rdf:RDF>