Publikation:

DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning

Lade...
Vorschaubild

Dateien

Graving_2-1u19syoqeazrh4.pdf
Graving_2-1u19syoqeazrh4.pdfGröße: 2.91 MBDownloads: 343

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 748549

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

eLife. eLife Sciences Publications. 2019, 8, e47994. eISSN 2050-084X. Available under: doi: 10.7554/eLife.47994

Zusammenfassung

Quantitative behavioral measurements are important for answering questions across scientific disciplines-from neuroscience to ecology. State-of-the-art deep-learning methods offer major advances in data quality and detail by allowing researchers to automatically estimate locations of an animal's body parts directly from images or videos. However, currently-available animal pose estimation methods have limitations in speed and robustness. Here we introduce a new easy-to-use software toolkit, DeepPoseKit, that addresses these problems using an efficient multi-scale deep-learning model, called Stacked DenseNet, and a fast GPU-based peak-detection algorithm for estimating keypoint locations with subpixel precision. These advances improve processing speed >2× with no loss in accuracy compared to currently-available methods. We demonstrate the versatility of our methods with multiple challenging animal pose estimation tasks in laboratory and field settings-including groups of interacting individuals. Our work reduces barriers to using advanced tools for measuring behavior and has broad applicability across the behavioral sciences.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GRAVING, Jacob M., Daniel CHAE, Hemal NAIK, Liang LI, Benjamin KOGER, Blair R. COSTELLOE, Iain D. COUZIN, 2019. DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning. In: eLife. eLife Sciences Publications. 2019, 8, e47994. eISSN 2050-084X. Available under: doi: 10.7554/eLife.47994
BibTex
@article{Graving2019-10-01DeepP-47135,
  year={2019},
  doi={10.7554/eLife.47994},
  title={DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning},
  volume={8},
  journal={eLife},
  author={Graving, Jacob M. and Chae, Daniel and Naik, Hemal and Li, Liang and Koger, Benjamin and Costelloe, Blair R. and Couzin, Iain D.},
  note={Article Number: e47994}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47135">
    <dc:creator>Naik, Hemal</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-08T11:39:15Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning</dcterms:title>
    <dc:creator>Chae, Daniel</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Naik, Hemal</dc:contributor>
    <dcterms:abstract xml:lang="eng">Quantitative behavioral measurements are important for answering questions across scientific disciplines-from neuroscience to ecology. State-of-the-art deep-learning methods offer major advances in data quality and detail by allowing researchers to automatically estimate locations of an animal's body parts directly from images or videos. However, currently-available animal pose estimation methods have limitations in speed and robustness. Here we introduce a new easy-to-use software toolkit, DeepPoseKit, that addresses these problems using an efficient multi-scale deep-learning model, called Stacked DenseNet, and a fast GPU-based peak-detection algorithm for estimating keypoint locations with subpixel precision. These advances improve processing speed &gt;2× with no loss in accuracy compared to currently-available methods. We demonstrate the versatility of our methods with multiple challenging animal pose estimation tasks in laboratory and field settings-including groups of interacting individuals. Our work reduces barriers to using advanced tools for measuring behavior and has broad applicability across the behavioral sciences.</dcterms:abstract>
    <dc:creator>Costelloe, Blair R.</dc:creator>
    <dc:contributor>Couzin, Iain D.</dc:contributor>
    <dc:contributor>Graving, Jacob M.</dc:contributor>
    <dc:contributor>Koger, Benjamin</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Koger, Benjamin</dc:creator>
    <dc:contributor>Li, Liang</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47135/3/Graving_2-1u19syoqeazrh4.pdf"/>
    <dc:contributor>Costelloe, Blair R.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Chae, Daniel</dc:contributor>
    <dcterms:issued>2019-10-01</dcterms:issued>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Li, Liang</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-08T11:39:15Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47135"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Graving, Jacob M.</dc:creator>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47135/3/Graving_2-1u19syoqeazrh4.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen