Publikation: A minimum-labeling approach for reconstructing protein networks across multiple conditions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Background
The sheer amounts of biological data that are generated in recent years have driven the development of network analysis tools to facilitate the interpretation and representation of these data. A fundamental challenge in this domain is the reconstruction of a protein-protein subnetwork that underlies a process of interest from a genome-wide screen of associated genes. Despite intense work in this area, current algorithmic approaches are largely limited to analyzing a single screen and are, thus, unable to account for information on condition-specific genes, or reveal the dynamics (over time or condition) of the process in question.
Results
We propose a novel formulation for the problem of network reconstruction from multiple-condition data and devise an efficient integer program solution for it. We apply our algorithm to analyze the response to influenza infection and ER export regulation in humans. By comparing to an extant, single-condition tool we demonstrate the power of our new approach in integrating data from multiple conditions in a compact and coherent manner, capturing the dynamics of the underlying processes.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MAZZA, Arnon, Irit GAT-VIKS, Hesso FARHAN, Roded SHARAN, 2014. A minimum-labeling approach for reconstructing protein networks across multiple conditions. In: Algorithms for Molecular Biology. 2014, 9(1), 1. eISSN 1748-7188. Available under: doi: 10.1186/1748-7188-9-1BibTex
@article{Mazza2014minim-28080, year={2014}, doi={10.1186/1748-7188-9-1}, title={A minimum-labeling approach for reconstructing protein networks across multiple conditions}, number={1}, volume={9}, journal={Algorithms for Molecular Biology}, author={Mazza, Arnon and Gat-Viks, Irit and Farhan, Hesso and Sharan, Roded}, note={Article Number: 1} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28080"> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/2.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Gat-Viks, Irit</dc:creator> <dcterms:title>A minimum-labeling approach for reconstructing protein networks across multiple conditions</dcterms:title> <dc:creator>Farhan, Hesso</dc:creator> <dc:rights>Attribution 2.0 Generic</dc:rights> <dc:language>eng</dc:language> <dc:contributor>Mazza, Arnon</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28080/1/Mazza_280803.pdf"/> <dc:creator>Mazza, Arnon</dc:creator> <dcterms:issued>2014</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-24T06:22:41Z</dcterms:available> <dc:creator>Sharan, Roded</dc:creator> <dc:contributor>Farhan, Hesso</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Gat-Viks, Irit</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28080/1/Mazza_280803.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-06-24T06:22:41Z</dc:date> <dcterms:bibliographicCitation>Algorithms for Molecular Biology ; 9 (2014). - 1</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Background<br /><br /><br />The sheer amounts of biological data that are generated in recent years have driven the development of network analysis tools to facilitate the interpretation and representation of these data. A fundamental challenge in this domain is the reconstruction of a protein-protein subnetwork that underlies a process of interest from a genome-wide screen of associated genes. Despite intense work in this area, current algorithmic approaches are largely limited to analyzing a single screen and are, thus, unable to account for information on condition-specific genes, or reveal the dynamics (over time or condition) of the process in question.<br /><br /><br /><br /><br />Results<br /><br /><br />We propose a novel formulation for the problem of network reconstruction from multiple-condition data and devise an efficient integer program solution for it. We apply our algorithm to analyze the response to influenza infection and ER export regulation in humans. By comparing to an extant, single-condition tool we demonstrate the power of our new approach in integrating data from multiple conditions in a compact and coherent manner, capturing the dynamics of the underlying processes.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/28080"/> <dc:contributor>Sharan, Roded</dc:contributor> </rdf:Description> </rdf:RDF>