Publikation: Integrating Data and Model Space in Ensemble Learning by Visual Analytics
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack of comprehensibility, posing a challenge to understand how each model affects the classification outputs and from where the errors come. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce an interactive workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. The involvement of the user is key to our approach. Therefore, we elaborate on the role of the human and connect our approach to theoretical frameworks on human-centered machine learning. We showcase the usefulness of our approach and the integration of the user via binary and multiclass classification problems. Based on ensembles automatically selected by a standard ensemble selection algorithm, the user can manipulate models and alternative combinations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHNEIDER, Bruno, Dominik JÄCKLE, Florian STOFFEL, Alexandra DIEHL, Johannes FUCHS, Daniel A. KEIM, 2021. Integrating Data and Model Space in Ensemble Learning by Visual Analytics. In: IEEE Transactions on Big Data. Institute of Electrical and Electronics Engineers (IEEE). 2021, 7(3), pp. 483-496. ISSN 2372-2096. eISSN 2332-7790. Available under: doi: 10.1109/TBDATA.2018.2877350BibTex
@article{Schneider2021Integ-44388, year={2021}, doi={10.1109/TBDATA.2018.2877350}, title={Integrating Data and Model Space in Ensemble Learning by Visual Analytics}, number={3}, volume={7}, issn={2372-2096}, journal={IEEE Transactions on Big Data}, pages={483--496}, author={Schneider, Bruno and Jäckle, Dominik and Stoffel, Florian and Diehl, Alexandra and Fuchs, Johannes and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44388"> <dc:contributor>Fuchs, Johannes</dc:contributor> <dc:creator>Schneider, Bruno</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Fuchs, Johannes</dc:creator> <dcterms:abstract xml:lang="eng">Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack of comprehensibility, posing a challenge to understand how each model affects the classification outputs and from where the errors come. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce an interactive workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. The involvement of the user is key to our approach. Therefore, we elaborate on the role of the human and connect our approach to theoretical frameworks on human-centered machine learning. We showcase the usefulness of our approach and the integration of the user via binary and multiclass classification problems. Based on ensembles automatically selected by a standard ensemble selection algorithm, the user can manipulate models and alternative combinations.</dcterms:abstract> <dc:creator>Jäckle, Dominik</dc:creator> <dcterms:title>Integrating Data and Model Space in Ensemble Learning by Visual Analytics</dcterms:title> <dc:contributor>Schneider, Bruno</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44388"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Diehl, Alexandra</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T13:38:29Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44388/1/Schneider_2-1u03go1k159id1.pdf"/> <dc:contributor>Diehl, Alexandra</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T13:38:29Z</dcterms:available> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Stoffel, Florian</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44388/1/Schneider_2-1u03go1k159id1.pdf"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Jäckle, Dominik</dc:contributor> <dcterms:issued>2021</dcterms:issued> <dc:contributor>Stoffel, Florian</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Keim, Daniel A.</dc:contributor> </rdf:Description> </rdf:RDF>