Integrating Data and Model Space in Ensemble Learning by Visual Analytics

Loading...
Thumbnail Image
Date
2021
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
IEEE Transactions on Big Data ; 7 (2021), 3. - pp. 483-496. - Institute of Electrical and Electronics Engineers (IEEE). - ISSN 2372-2096. - eISSN 2332-7790
Abstract
Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack of comprehensibility, posing a challenge to understand how each model affects the classification outputs and from where the errors come. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce an interactive workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. The involvement of the user is key to our approach. Therefore, we elaborate on the role of the human and connect our approach to theoretical frameworks on human-centered machine learning. We showcase the usefulness of our approach and the integration of the user via binary and multiclass classification problems. Based on ensembles automatically selected by a standard ensemble selection algorithm, the user can manipulate models and alternative combinations.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Classification, Ensemble learning, Data visualization, Graphical user interfaces
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SCHNEIDER, Bruno, Dominik JÄCKLE, Florian STOFFEL, Alexandra DIEHL, Johannes FUCHS, Daniel A. KEIM, 2021. Integrating Data and Model Space in Ensemble Learning by Visual Analytics. In: IEEE Transactions on Big Data. Institute of Electrical and Electronics Engineers (IEEE). 7(3), pp. 483-496. ISSN 2372-2096. eISSN 2332-7790. Available under: doi: 10.1109/TBDATA.2018.2877350
BibTex
@article{Schneider2021Integ-44388,
  year={2021},
  doi={10.1109/TBDATA.2018.2877350},
  title={Integrating Data and Model Space in Ensemble Learning by Visual Analytics},
  number={3},
  volume={7},
  issn={2372-2096},
  journal={IEEE Transactions on Big Data},
  pages={483--496},
  author={Schneider, Bruno and Jäckle, Dominik and Stoffel, Florian and Diehl, Alexandra and Fuchs, Johannes and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44388">
    <dc:contributor>Fuchs, Johannes</dc:contributor>
    <dc:creator>Schneider, Bruno</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Fuchs, Johannes</dc:creator>
    <dcterms:abstract xml:lang="eng">Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack of comprehensibility, posing a challenge to understand how each model affects the classification outputs and from where the errors come. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce an interactive workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. The involvement of the user is key to our approach. Therefore, we elaborate on the role of the human and connect our approach to theoretical frameworks on human-centered machine learning. We showcase the usefulness of our approach and the integration of the user via binary and multiclass classification problems. Based on ensembles automatically selected by a standard ensemble selection algorithm, the user can manipulate models and alternative combinations.</dcterms:abstract>
    <dc:creator>Jäckle, Dominik</dc:creator>
    <dcterms:title>Integrating Data and Model Space in Ensemble Learning by Visual Analytics</dcterms:title>
    <dc:contributor>Schneider, Bruno</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44388"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Diehl, Alexandra</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T13:38:29Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44388/1/Schneider_2-1u03go1k159id1.pdf"/>
    <dc:contributor>Diehl, Alexandra</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T13:38:29Z</dcterms:available>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>Stoffel, Florian</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44388/1/Schneider_2-1u03go1k159id1.pdf"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Jäckle, Dominik</dc:contributor>
    <dcterms:issued>2021</dcterms:issued>
    <dc:contributor>Stoffel, Florian</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown