Publikation:

Universal transduction scheme for nanomechanical systems based on dielectric forces

Lade...
Vorschaubild

Dateien

Unterreithmeier_234764.pdf
Unterreithmeier_234764.pdfGröße: 2.37 MBDownloads: 867

Datum

2009

Autor:innen

Unterreithmeier, Quirin P.
Kotthaus, Jörg P.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Nature. 2009, 458(7241), pp. 1001-1004. ISSN 0028-0836. eISSN 1476-4687. Available under: doi: 10.1038/nature07932

Zusammenfassung

Any polarizable body placed in an inhomogeneous electric field experiences a dielectric force. This phenomenon is well known from the macroscopic world: a water jet is deflected when approached by a charged object. This fundamental mechanism is exploited in a variety of contexts—for example, trapping microscopic particles in an optical tweezer1, where the trapping force is controlled via the intensity of a laser beam, or dielectrophoresis2, where electric fields are used to manipulate particles in liquids. Here we extend the underlying concept to the rapidly evolving field of nanoelectromechanical systems3, 4 (NEMS). A broad range of possible applications are anticipated for these systems5, 6, 7, but drive and detection schemes for nanomechanical motion still need to be optimized8, 9. Our approach is based on the application of dielectric gradient forces for the controlled and local transduction of NEMS. Using a set of on-chip electrodes to create an electric field gradient, we polarize a dielectric resonator and subject it to an attractive force that can be modulated at high frequencies. This universal actuation scheme is efficient, broadband and scalable. It also separates the driving scheme from the driven mechanical element, allowing for arbitrary polarizable materials and thus potentially ultralow dissipation NEMS10. In addition, it enables simple voltage tuning of the mechanical resonance over a wide frequency range, because the dielectric force depends strongly on the resonator–electrode separation. We use the modulation of the resonance frequency to demonstrate parametric actuation11, 12. Moreover, we reverse the actuation principle to realize dielectric detection, thus allowing universal transduction of NEMS. We expect this combination to be useful both in the study of fundamental principles and in applications such as signal processing and sensing.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690UNTERREITHMEIER, Quirin P., Eva M. WEIG, Jörg P. KOTTHAUS, 2009. Universal transduction scheme for nanomechanical systems based on dielectric forces. In: Nature. 2009, 458(7241), pp. 1001-1004. ISSN 0028-0836. eISSN 1476-4687. Available under: doi: 10.1038/nature07932
BibTex
@article{Unterreithmeier2009-04-23Unive-23476,
  year={2009},
  doi={10.1038/nature07932},
  title={Universal transduction scheme for nanomechanical systems based on dielectric forces},
  number={7241},
  volume={458},
  issn={0028-0836},
  journal={Nature},
  pages={1001--1004},
  author={Unterreithmeier, Quirin P. and Weig, Eva M. and Kotthaus, Jörg P.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23476">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23476/1/Unterreithmeier_234764.pdf"/>
    <dcterms:bibliographicCitation>Nature ; 458 (2009), 7241. - S. 1001-1004</dcterms:bibliographicCitation>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:abstract xml:lang="eng">Any polarizable body placed in an inhomogeneous electric field experiences a dielectric force. This phenomenon is well known from the macroscopic world: a water jet is deflected when approached by a charged object. This fundamental mechanism is exploited in a variety of contexts—for example, trapping microscopic particles in an optical tweezer1, where the trapping force is controlled via the intensity of a laser beam, or dielectrophoresis2, where electric fields are used to manipulate particles in liquids. Here we extend the underlying concept to the rapidly evolving field of nanoelectromechanical systems3, 4 (NEMS). A broad range of possible applications are anticipated for these systems5, 6, 7, but drive and detection schemes for nanomechanical motion still need to be optimized8, 9. Our approach is based on the application of dielectric gradient forces for the controlled and local transduction of NEMS. Using a set of on-chip electrodes to create an electric field gradient, we polarize a dielectric resonator and subject it to an attractive force that can be modulated at high frequencies. This universal actuation scheme is efficient, broadband and scalable. It also separates the driving scheme from the driven mechanical element, allowing for arbitrary polarizable materials and thus potentially ultralow dissipation NEMS10. In addition, it enables simple voltage tuning of the mechanical resonance over a wide frequency range, because the dielectric force depends strongly on the resonator–electrode separation. We use the modulation of the resonance frequency to demonstrate parametric actuation11, 12. Moreover, we reverse the actuation principle to realize dielectric detection, thus allowing universal transduction of NEMS. We expect this combination to be useful both in the study of fundamental principles and in applications such as signal processing and sensing.</dcterms:abstract>
    <dc:contributor>Weig, Eva M.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Universal transduction scheme for nanomechanical systems based on dielectric forces</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-06T07:54:05Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:issued>2009-04-23</dcterms:issued>
    <dc:creator>Unterreithmeier, Quirin P.</dc:creator>
    <dc:contributor>Kotthaus, Jörg P.</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Kotthaus, Jörg P.</dc:creator>
    <dc:contributor>Unterreithmeier, Quirin P.</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23476"/>
    <dc:creator>Weig, Eva M.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-06T07:54:05Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23476/1/Unterreithmeier_234764.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen