Publikation: Deeprn : A Content Preserving Deep Architecture for Blind Image Quality Assessment
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper presents a blind image quality assessment (BIQA) method based on deep learning with convolutional neural networks (CNN). Our method is trained on full and arbitrarily sized images rather than small image patches or resized input images as usually done in CNNs for image classification and quality assessment. The resolution independence is achieved by pyramid pooling. This work is the first that applies a fine-tuned residual deep learning network (ResNet-101) to BIQA. The training is carried out on a new and very large, labeled dataset of 10, 073 images (KonIQ-10k) that contains quality rating histograms besides the mean opinion scores (MOS). In contrast to previous methods we do not train to approximate the MOS directly, but rather use the distributions of scores. Experiments were carried out on three benchmark image quality databases. The results showed clear improvements of the accuracy of the estimated MOS values, compared to current state-of-the-art algorithms. We also report on the quality of the estimation of the score distributions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
VARGA, Domonkos, Dietmar SAUPE, Tamas SZIRANYI, 2018. Deeprn : A Content Preserving Deep Architecture for Blind Image Quality Assessment. 2018 IEEE International Conference on Multimedia and Expo (ICME). San Diego, California, USA, 23. Juli 2018 - 27. Juli 2018. In: 2018 IEEE International Conference on Multimedia and Expo (ICME). Piscataway, New Jersey, USA: IEEE, 2018. ISBN 978-1-5386-1737-3. Available under: doi: 10.1109/ICME.2018.8486528BibTex
@inproceedings{Varga2018Deepr-44634, year={2018}, doi={10.1109/ICME.2018.8486528}, title={Deeprn : A Content Preserving Deep Architecture for Blind Image Quality Assessment}, isbn={978-1-5386-1737-3}, publisher={IEEE}, address={Piscataway, New Jersey, USA}, booktitle={2018 IEEE International Conference on Multimedia and Expo (ICME)}, author={Varga, Domonkos and Saupe, Dietmar and Sziranyi, Tamas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44634"> <dc:contributor>Varga, Domonkos</dc:contributor> <dc:creator>Sziranyi, Tamas</dc:creator> <dcterms:title>Deeprn : A Content Preserving Deep Architecture for Blind Image Quality Assessment</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Saupe, Dietmar</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-21T11:00:57Z</dc:date> <dc:contributor>Sziranyi, Tamas</dc:contributor> <dcterms:issued>2018</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44634"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">This paper presents a blind image quality assessment (BIQA) method based on deep learning with convolutional neural networks (CNN). Our method is trained on full and arbitrarily sized images rather than small image patches or resized input images as usually done in CNNs for image classification and quality assessment. The resolution independence is achieved by pyramid pooling. This work is the first that applies a fine-tuned residual deep learning network (ResNet-101) to BIQA. The training is carried out on a new and very large, labeled dataset of 10, 073 images (KonIQ-10k) that contains quality rating histograms besides the mean opinion scores (MOS). In contrast to previous methods we do not train to approximate the MOS directly, but rather use the distributions of scores. Experiments were carried out on three benchmark image quality databases. The results showed clear improvements of the accuracy of the estimated MOS values, compared to current state-of-the-art algorithms. We also report on the quality of the estimation of the score distributions.</dcterms:abstract> <dc:language>eng</dc:language> <dc:creator>Varga, Domonkos</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-21T11:00:57Z</dcterms:available> <dc:contributor>Saupe, Dietmar</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>