Publikation: The Visual Exploration of Aggregate Similarity for Multi-Dimensional Clustering
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a visualisation prototype for the support of a novel approach to clustering called TRIAGE. TRIAGE uses aggregation functions which are more adaptable and flexible than the weighted mean for similarity modelling. While TRIAGE has proven itself in practice, the use of complex similarity models makes the interpretation of TRIAGE clusterings challenging. We address this challenge by providing analysts with a linked, matrix-based visualisation of all relevant data attributes. We employ data sampling and matrix seriation to support both effective overviews and fluid, interactive exploration using the same visual metaphor for heterogeneous attributes. The usability of our prototype is demonstrated and assessed with the help of real-world usage scenarios from the cyber-security domain.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
TWELLMEYER, James, Marco HUTTER, Michael BEHRISCH, Jörn KOHLHAMMER, Tobias SCHRECK, 2015. The Visual Exploration of Aggregate Similarity for Multi-Dimensional Clustering. IVAPP 2015 : Information Visualization Theory and Applications. Berlin, 11. März 2015 - 14. März 2015. In: JOSÉ BRAZ, , ed. and others. IVAPP 2015 : Proceedings of the 6 th International Conference on Information Visualization Theory and Applications. SciTepress, 2015, pp. 40-50. ISBN 978-989-758-088-8BibTex
@inproceedings{Twellmeyer2015Visua-31471, year={2015}, title={The Visual Exploration of Aggregate Similarity for Multi-Dimensional Clustering}, isbn={978-989-758-088-8}, publisher={SciTepress}, booktitle={IVAPP 2015 : Proceedings of the 6 th International Conference on Information Visualization Theory and Applications}, pages={40--50}, editor={José Braz}, author={Twellmeyer, James and Hutter, Marco and Behrisch, Michael and Kohlhammer, Jörn and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31471"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Hutter, Marco</dc:creator> <dcterms:title>The Visual Exploration of Aggregate Similarity for Multi-Dimensional Clustering</dcterms:title> <dc:contributor>Behrisch, Michael</dc:contributor> <dc:contributor>Twellmeyer, James</dc:contributor> <dc:contributor>Kohlhammer, Jörn</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31471"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2015</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-23T11:42:26Z</dcterms:available> <dc:creator>Behrisch, Michael</dc:creator> <dcterms:abstract xml:lang="eng">We present a visualisation prototype for the support of a novel approach to clustering called TRIAGE. TRIAGE uses aggregation functions which are more adaptable and flexible than the weighted mean for similarity modelling. While TRIAGE has proven itself in practice, the use of complex similarity models makes the interpretation of TRIAGE clusterings challenging. We address this challenge by providing analysts with a linked, matrix-based visualisation of all relevant data attributes. We employ data sampling and matrix seriation to support both effective overviews and fluid, interactive exploration using the same visual metaphor for heterogeneous attributes. The usability of our prototype is demonstrated and assessed with the help of real-world usage scenarios from the cyber-security domain.</dcterms:abstract> <dc:creator>Twellmeyer, James</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-23T11:42:26Z</dc:date> <dc:language>eng</dc:language> <dc:creator>Schreck, Tobias</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hutter, Marco</dc:contributor> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Kohlhammer, Jörn</dc:creator> </rdf:Description> </rdf:RDF>