Publikation: Asymptotic forecasting error evaluation for estimated temporally aggregated linear processes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper provides implementation details and application examples of the asymptotic error evaluation formulas introduced in Grigoryeva and Ortega (2014a) concerning three different approaches to the forecasting of linear temporal aggregates using estimated linear processes. The first two techniques are the 'all-aggregated' and the 'all-disaggregated' approaches that use either both aggregated data samples and models or their disaggregated counterparts, respectively. The third one is a so called 'hybrid' method that consists of carrying out model parameter estimation with data sampled at the highest available frequency and the subsequent prediction with data and models aggregated according to the forecasting horizon of interest. The formulas considered allow to approximately quantify the mean square forecasting errors associated to these three prediction schemes taking into account the estimation error component. We illustrate these developments with several examples.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GRIGORYEVA, Lyudmila, Juan-Pablo ORTEGA, 2015. Asymptotic forecasting error evaluation for estimated temporally aggregated linear processes. In: International Journal of Computational Economics and Econometrics. Inderscience Enterprises. 2015, 5(3), pp. 289-318. ISSN 1757-1170. eISSN 1757-1189. Available under: doi: 10.1504/IJCEE.2015.070612BibTex
@article{Grigoryeva2015Asymp-55525, year={2015}, doi={10.1504/IJCEE.2015.070612}, title={Asymptotic forecasting error evaluation for estimated temporally aggregated linear processes}, url={https://www.inderscienceonline.com/doi/abs/10.1504/IJCEE.2015.070612}, number={3}, volume={5}, issn={1757-1170}, journal={International Journal of Computational Economics and Econometrics}, pages={289--318}, author={Grigoryeva, Lyudmila and Ortega, Juan-Pablo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55525"> <dcterms:issued>2015</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Ortega, Juan-Pablo</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T11:48:41Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">This paper provides implementation details and application examples of the asymptotic error evaluation formulas introduced in Grigoryeva and Ortega (2014a) concerning three different approaches to the forecasting of linear temporal aggregates using estimated linear processes. The first two techniques are the 'all-aggregated' and the 'all-disaggregated' approaches that use either both aggregated data samples and models or their disaggregated counterparts, respectively. The third one is a so called 'hybrid' method that consists of carrying out model parameter estimation with data sampled at the highest available frequency and the subsequent prediction with data and models aggregated according to the forecasting horizon of interest. The formulas considered allow to approximately quantify the mean square forecasting errors associated to these three prediction schemes taking into account the estimation error component. We illustrate these developments with several examples.</dcterms:abstract> <dc:language>eng</dc:language> <dc:creator>Ortega, Juan-Pablo</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T11:48:41Z</dcterms:available> <dcterms:title>Asymptotic forecasting error evaluation for estimated temporally aggregated linear processes</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55525"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Grigoryeva, Lyudmila</dc:creator> <dc:contributor>Grigoryeva, Lyudmila</dc:contributor> </rdf:Description> </rdf:RDF>