Publikation:

Asymptotic forecasting error evaluation for estimated temporally aggregated linear processes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Ortega, Juan-Pablo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Computational Economics and Econometrics. Inderscience Enterprises. 2015, 5(3), pp. 289-318. ISSN 1757-1170. eISSN 1757-1189. Available under: doi: 10.1504/IJCEE.2015.070612

Zusammenfassung

This paper provides implementation details and application examples of the asymptotic error evaluation formulas introduced in Grigoryeva and Ortega (2014a) concerning three different approaches to the forecasting of linear temporal aggregates using estimated linear processes. The first two techniques are the 'all-aggregated' and the 'all-disaggregated' approaches that use either both aggregated data samples and models or their disaggregated counterparts, respectively. The third one is a so called 'hybrid' method that consists of carrying out model parameter estimation with data sampled at the highest available frequency and the subsequent prediction with data and models aggregated according to the forecasting horizon of interest. The formulas considered allow to approximately quantify the mean square forecasting errors associated to these three prediction schemes taking into account the estimation error component. We illustrate these developments with several examples.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

linear models, ARMA, autoregressive moving average, finite sample forecasting, multifrequency forecasting, flow temporal aggregation, stock temporal aggregation, multistep forecasting, hybrid forecasting, modelling, asymptotic error evaluation, linear temporal aggregates, parameter estimation, forecasting errors

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GRIGORYEVA, Lyudmila, Juan-Pablo ORTEGA, 2015. Asymptotic forecasting error evaluation for estimated temporally aggregated linear processes. In: International Journal of Computational Economics and Econometrics. Inderscience Enterprises. 2015, 5(3), pp. 289-318. ISSN 1757-1170. eISSN 1757-1189. Available under: doi: 10.1504/IJCEE.2015.070612
BibTex
@article{Grigoryeva2015Asymp-55525,
  year={2015},
  doi={10.1504/IJCEE.2015.070612},
  title={Asymptotic forecasting error evaluation for estimated temporally aggregated linear processes},
  url={https://www.inderscienceonline.com/doi/abs/10.1504/IJCEE.2015.070612},
  number={3},
  volume={5},
  issn={1757-1170},
  journal={International Journal of Computational Economics and Econometrics},
  pages={289--318},
  author={Grigoryeva, Lyudmila and Ortega, Juan-Pablo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55525">
    <dcterms:issued>2015</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Ortega, Juan-Pablo</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T11:48:41Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">This paper provides implementation details and application examples of the asymptotic error evaluation formulas introduced in Grigoryeva and Ortega (2014a) concerning three different approaches to the forecasting of linear temporal aggregates using estimated linear processes. The first two techniques are the 'all-aggregated' and the 'all-disaggregated' approaches that use either both aggregated data samples and models or their disaggregated counterparts, respectively. The third one is a so called 'hybrid' method that consists of carrying out model parameter estimation with data sampled at the highest available frequency and the subsequent prediction with data and models aggregated according to the forecasting horizon of interest. The formulas considered allow to approximately quantify the mean square forecasting errors associated to these three prediction schemes taking into account the estimation error component. We illustrate these developments with several examples.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:creator>Ortega, Juan-Pablo</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T11:48:41Z</dcterms:available>
    <dcterms:title>Asymptotic forecasting error evaluation for estimated temporally aggregated linear processes</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55525"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Grigoryeva, Lyudmila</dc:creator>
    <dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2021-11-11

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen