Publikation: Adaptive moment closure for parameter inference of biochemical reaction networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze. The parameter inference methods that tend to scale best in the dimension of the CTMC are based on so-called moment closure approximations. However, there exists a large number of different moment closure approximations and it is typically hard to say a priori which of the approximations is the most suitable for the inference procedure. Here, we propose a moment-based parameter inference method that automatically chooses the most appropriate moment closure method. Accordingly, contrary to existing methods, the user is not required to be experienced in moment closure techniques. In addition to that, our method adaptively changes the approximation during the parameter inference to ensure that always the best approximation is used, even in cases where different approximations are best in different regions of the parameter space.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHILLING, Christian, Sergiy BOGOMOLOV, Thomas A. HENZINGER, Andreas PODELSKI, Jakob RUESS, 2016. Adaptive moment closure for parameter inference of biochemical reaction networks. In: Biosystems. Elsevier. 2016, 149, pp. 15-25. ISSN 0303-2647. eISSN 1872-8324. Available under: doi: 10.1016/j.biosystems.2016.07.005BibTex
@article{Schilling2016-11Adapt-52460, year={2016}, doi={10.1016/j.biosystems.2016.07.005}, title={Adaptive moment closure for parameter inference of biochemical reaction networks}, volume={149}, issn={0303-2647}, journal={Biosystems}, pages={15--25}, author={Schilling, Christian and Bogomolov, Sergiy and Henzinger, Thomas A. and Podelski, Andreas and Ruess, Jakob} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52460"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52460"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2016-11</dcterms:issued> <dc:language>eng</dc:language> <dc:creator>Bogomolov, Sergiy</dc:creator> <dc:contributor>Schilling, Christian</dc:contributor> <dc:contributor>Henzinger, Thomas A.</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Podelski, Andreas</dc:creator> <dc:contributor>Podelski, Andreas</dc:contributor> <dc:contributor>Ruess, Jakob</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T10:24:06Z</dc:date> <dcterms:abstract xml:lang="eng">Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze. The parameter inference methods that tend to scale best in the dimension of the CTMC are based on so-called moment closure approximations. However, there exists a large number of different moment closure approximations and it is typically hard to say a priori which of the approximations is the most suitable for the inference procedure. Here, we propose a moment-based parameter inference method that automatically chooses the most appropriate moment closure method. Accordingly, contrary to existing methods, the user is not required to be experienced in moment closure techniques. In addition to that, our method adaptively changes the approximation during the parameter inference to ensure that always the best approximation is used, even in cases where different approximations are best in different regions of the parameter space.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T10:24:06Z</dcterms:available> <dc:creator>Henzinger, Thomas A.</dc:creator> <dc:creator>Schilling, Christian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Adaptive moment closure for parameter inference of biochemical reaction networks</dcterms:title> <dc:contributor>Bogomolov, Sergiy</dc:contributor> <dc:creator>Ruess, Jakob</dc:creator> </rdf:Description> </rdf:RDF>