Publikation:

Instagram Likes for Architectural Photos Can Be Predicted by Quantitative Balance Measures and Curvature

Lade...
Vorschaubild

Dateien

Huebner_2-1tnxc9gexwq210.pdf
Huebner_2-1tnxc9gexwq210.pdfGröße: 2.36 MBDownloads: 409

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Frontiers in Psychology. 2018, 9, 1050. eISSN 1664-1078. Available under: doi: 10.3389/fpsyg.2018.01050

Zusammenfassung

"3,058 people like this." In the digital age, people very commonly indicate their preferences by clicking a Like button. The data generated on the photo-sharing platform Instagram potentially represents a vast, freely accessible resource for research in the field of visual experimental aesthetics. Therefore, we compiled a photo database using images of five different Instagram accounts that fullfil several criteria (e.g., large followership, consistent content). The final database consists of about 700 architectural photographs with the corresponding liking data generated by the Instagram community. First, we aimed at validating Instagram Likes as a potential measure of aesthetic appeal. Second, we checked whether previously studied low-level features of "good" image composition also account for the number of Instagram Likes that architectural photographs received. We considered two measures of visual balance and the preference for curvature over angularity. In addition, differences between images with "2D" vs. "3D" appearance became obvious. Our findings show that visual balance predicts Instagram Likes in more complex "3D" photographs, with more balance meaning more Likes. In the less complex "2D" photographs the relation is reversed, more balance led to fewer Likes. Moreover, there was a general preference for curvature in the Instagram database. Together, our study illustrates the potential of using Instagram Likes as a measure of aesthetic appeal and provides a fruitful methodological basis for future research.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

visual aesthetics, Instagram Likes, aesthetic appeal, computational aesthetics, architectural photography, visual balance, image composition, curvature

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690THÖMMES, Katja, Ronald HÜBNER, 2018. Instagram Likes for Architectural Photos Can Be Predicted by Quantitative Balance Measures and Curvature. In: Frontiers in Psychology. 2018, 9, 1050. eISSN 1664-1078. Available under: doi: 10.3389/fpsyg.2018.01050
BibTex
@article{Thommes2018Insta-42937,
  year={2018},
  doi={10.3389/fpsyg.2018.01050},
  title={Instagram Likes for Architectural Photos Can Be Predicted by Quantitative Balance Measures and Curvature},
  volume={9},
  journal={Frontiers in Psychology},
  author={Thömmes, Katja and Hübner, Ronald},
  note={Article Number: 1050}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42937">
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Thömmes, Katja</dc:creator>
    <dc:creator>Hübner, Ronald</dc:creator>
    <dcterms:abstract xml:lang="eng">"3,058 people like this." In the digital age, people very commonly indicate their preferences by clicking a Like button. The data generated on the photo-sharing platform Instagram potentially represents a vast, freely accessible resource for research in the field of visual experimental aesthetics. Therefore, we compiled a photo database using images of five different Instagram accounts that fullfil several criteria (e.g., large followership, consistent content). The final database consists of about 700 architectural photographs with the corresponding liking data generated by the Instagram community. First, we aimed at validating Instagram Likes as a potential measure of aesthetic appeal. Second, we checked whether previously studied low-level features of "good" image composition also account for the number of Instagram Likes that architectural photographs received. We considered two measures of visual balance and the preference for curvature over angularity. In addition, differences between images with "2D" vs. "3D" appearance became obvious. Our findings show that visual balance predicts Instagram Likes in more complex "3D" photographs, with more balance meaning more Likes. In the less complex "2D" photographs the relation is reversed, more balance led to fewer Likes. Moreover, there was a general preference for curvature in the Instagram database. Together, our study illustrates the potential of using Instagram Likes as a measure of aesthetic appeal and provides a fruitful methodological basis for future research.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42937"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-31T12:18:51Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42937/5/Huebner_2-1tnxc9gexwq210.pdf"/>
    <dcterms:title>Instagram Likes for Architectural Photos Can Be Predicted by Quantitative Balance Measures and Curvature</dcterms:title>
    <dc:contributor>Thömmes, Katja</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42937/5/Huebner_2-1tnxc9gexwq210.pdf"/>
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-31T12:18:51Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Hübner, Ronald</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen