Publikation:

Prediction : An Algorithmic Principle Meeting Neuroscience and Machine Learning Halfway

Lade...
Vorschaubild

Dateien

Bouhadjar_2-1tjmmji81ylqr1.pdf
Bouhadjar_2-1tjmmji81ylqr1.pdfGröße: 1.03 MBDownloads: 275

Datum

2022

Autor:innen

Bouhadjar, Younes
Payvand, Melika

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BUNDY, Alan, ed., Denis MARESCHAL, ed.. Proceedings of the 3rd Human-Like Computing Workshop (HLC 2022) co-located with the 2nd International Joint Conference on Learning and Reasoning (IJCLR 2022). Aachen: CEUR, 2022, pp. 46-52. CEUR Workshop Proceedings. 3227. eISSN 1613-0073

Zusammenfassung

In this paper, we support the relevance of the collaboration and mutual inspiration between research in Artificial Intelligence and neuroscience to create truly intelligent and efficient systems. In contrast to the traditional top-down and bottom-up strategies designed to study and emulate the brain, we propose an alternative approach where these two strategies are met halfway, defining a set of algorithmic principles. We present prediction as a core algorithmic principle and advocate for applying the same approach to identify other neural principles which can constitute core mechanisms of new Machine Learning frameworks.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Prediction, interdisciplinary, bottom-up, top-down

Konferenz

International Joint Conference on Learning & Reasoning 2022, 28. Sept. 2022 - 30. Sept. 2022, Windsor, UK
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BOUHADJAR, Younes, Caterina MORUZZI, Melika PAYVAND, 2022. Prediction : An Algorithmic Principle Meeting Neuroscience and Machine Learning Halfway. International Joint Conference on Learning & Reasoning 2022. Windsor, UK, 28. Sept. 2022 - 30. Sept. 2022. In: BUNDY, Alan, ed., Denis MARESCHAL, ed.. Proceedings of the 3rd Human-Like Computing Workshop (HLC 2022) co-located with the 2nd International Joint Conference on Learning and Reasoning (IJCLR 2022). Aachen: CEUR, 2022, pp. 46-52. CEUR Workshop Proceedings. 3227. eISSN 1613-0073
BibTex
@inproceedings{Bouhadjar2022Predi-58788,
  year={2022},
  title={Prediction : An Algorithmic Principle Meeting Neuroscience and Machine Learning Halfway},
  url={http://ceur-ws.org/Vol-3227/},
  number={3227},
  publisher={CEUR},
  address={Aachen},
  series={CEUR Workshop Proceedings},
  booktitle={Proceedings of the 3rd Human-Like Computing Workshop (HLC 2022) co-located with the 2nd International Joint Conference on Learning and Reasoning (IJCLR 2022)},
  pages={46--52},
  editor={Bundy, Alan and Mareschal, Denis},
  author={Bouhadjar, Younes and Moruzzi, Caterina and Payvand, Melika}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58788">
    <dc:contributor>Bouhadjar, Younes</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-11T08:38:20Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:creator>Bouhadjar, Younes</dc:creator>
    <dc:contributor>Moruzzi, Caterina</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58788/1/Bouhadjar_2-1tjmmji81ylqr1.pdf"/>
    <dc:creator>Moruzzi, Caterina</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:creator>Payvand, Melika</dc:creator>
    <dcterms:abstract xml:lang="eng">In this paper, we support the relevance of the collaboration and mutual inspiration between research in Artificial Intelligence and neuroscience to create truly intelligent and efficient systems. In contrast to the traditional top-down and bottom-up strategies designed to study and emulate the brain, we propose an alternative approach where these two strategies are met halfway, defining a set of algorithmic principles. We present prediction as a core algorithmic principle and advocate for applying the same approach to identify other neural principles which can constitute core mechanisms of new Machine Learning frameworks.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-11T08:38:20Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58788"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:title>Prediction : An Algorithmic Principle Meeting Neuroscience and Machine Learning Halfway</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58788/1/Bouhadjar_2-1tjmmji81ylqr1.pdf"/>
    <dc:contributor>Payvand, Melika</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

2022-10-11

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen