Publikation: Theory of silicon spin qubit relaxation in a synthetic spin-orbit field
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We develop the theory of single-electron silicon spin qubit relaxation in the presence of a magnetic field gradient. Such field gradients are routinely generated by on-chip micromagnets to allow for electrically controlled quantum gates on spin qubits. We build on a valley-dependent envelope function theory that enables the analysis of the electron wave function in a silicon quantum dot with an arbitrary roughness at the interface. We assume the presence of single-layer atomic steps at a Si/SiGe interface and study how the presence of a gradient field modifies the spin-mixing mechanisms. We show that our theoretical modeling can quantitatively reproduce the results of experimental measurements of qubit relaxation in silicon in the presence of a micromagnet. We further study how a field gradient can modify the EDSR Rabi frequency as well as the quality factor of a silicon spin qubit. We show that this strongly depends on the details of the interface roughness. Interestingly, for a quantum dot with an ideally flat interface, adding a micromagnet can give rise to the reduction of the EDSR frequency within some interval of the external magnetic field strength.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HOSSEINKHANI, Amin, Guido BURKARD, 2022. Theory of silicon spin qubit relaxation in a synthetic spin-orbit field. In: Physical Review B. American Physical Society (APS). 2022, 106(7), 075415. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.106.075415BibTex
@article{Hosseinkhani2022Theor-58814, year={2022}, doi={10.1103/PhysRevB.106.075415}, title={Theory of silicon spin qubit relaxation in a synthetic spin-orbit field}, number={7}, volume={106}, issn={2469-9950}, journal={Physical Review B}, author={Hosseinkhani, Amin and Burkard, Guido}, note={Article Number: 075415} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58814"> <dc:contributor>Burkard, Guido</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58814"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-14T07:27:22Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:issued>2022</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-14T07:27:22Z</dc:date> <dc:contributor>Hosseinkhani, Amin</dc:contributor> <dcterms:abstract xml:lang="eng">We develop the theory of single-electron silicon spin qubit relaxation in the presence of a magnetic field gradient. Such field gradients are routinely generated by on-chip micromagnets to allow for electrically controlled quantum gates on spin qubits. We build on a valley-dependent envelope function theory that enables the analysis of the electron wave function in a silicon quantum dot with an arbitrary roughness at the interface. We assume the presence of single-layer atomic steps at a Si/SiGe interface and study how the presence of a gradient field modifies the spin-mixing mechanisms. We show that our theoretical modeling can quantitatively reproduce the results of experimental measurements of qubit relaxation in silicon in the presence of a micromagnet. We further study how a field gradient can modify the EDSR Rabi frequency as well as the quality factor of a silicon spin qubit. We show that this strongly depends on the details of the interface roughness. Interestingly, for a quantum dot with an ideally flat interface, adding a micromagnet can give rise to the reduction of the EDSR frequency within some interval of the external magnetic field strength.</dcterms:abstract> <dc:creator>Burkard, Guido</dc:creator> <dcterms:title>Theory of silicon spin qubit relaxation in a synthetic spin-orbit field</dcterms:title> <dc:language>eng</dc:language> <dc:creator>Hosseinkhani, Amin</dc:creator> </rdf:Description> </rdf:RDF>