Publikation:

Wankelmut : A Simple Benchmark for the Evolvability of Behavioral Complexity

Lade...
Vorschaubild

Dateien

Schmickl_2-1t45klbhjaj720.pdf
Schmickl_2-1t45klbhjaj720.pdfGröße: 2.13 MBDownloads: 68

Datum

2021

Autor:innen

Schmickl, Thomas
Zahadat, Payam

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Applied Sciences. MDPI. 2021, 11(5), 1994. eISSN 2076-3417. Available under: doi: 10.3390/app11051994

Zusammenfassung

In evolutionary robotics, an encoding of the control software that maps sensor data (input) to motor control values (output) is shaped by stochastic optimization methods to complete a predefined task. This approach is assumed to be beneficial compared to standard methods of controller design in those cases where no a priori model is available that could help to optimize performance. For robots that have to operate in unpredictable environments as well, an evolutionary robotics approach is favorable. We present here a simple-to-implement, but hard-to-pass benchmark to allow for quantifying the “evolvability” of such evolving robot control software towards increasing behavioral complexity. We demonstrate that such a model-free approach is not a free lunch, as already simple tasks can be unsolvable barriers for fully open-ended uninformed evolutionary computation techniques. We propose the “Wankelmut” task as an objective for an evolutionary approach that starts from scratch without pre-shaped controller software or any other informed approach that would force the behavior to be evolved in a desired way. Our main claim is that “Wankelmut” represents the simplest set of problems that makes plain-vanilla evolutionary computation fail. We demonstrate this by a series of simple standard evolutionary approaches using different fitness functions and standard artificial neural networks, as well as continuous-time recurrent neural networks. All our tested approaches failed. From our observations, we conclude that other evolutionary approaches will also fail if they do not per se favor or enforce the modularity of the evolved structures and if they do not freeze or protect already evolved functionalities from being destroyed again in the later evolutionary process. However, such a protection would require a priori knowledge of the solution of the task and contradict the “no a priori model” approach that is often claimed in evolutionary computation. Thus, we propose a hard-to-pass benchmark in order to make a strong statement for self-complexifying and generative approaches in evolutionary computation in general and in evolutionary robotics specifically. We anticipate that defining such a benchmark by seeking the simplest task that causes the evolutionary process to fail can be a valuable benchmark for promoting future development in the fields of artificial intelligence, evolutionary robotics, and artificial life.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

evolutionary computation; complexity; artificial neural networks; CTRNN; agent-based model; stochastic optimization

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHMICKL, Thomas, Payam ZAHADAT, Heiko HAMANN, 2021. Wankelmut : A Simple Benchmark for the Evolvability of Behavioral Complexity. In: Applied Sciences. MDPI. 2021, 11(5), 1994. eISSN 2076-3417. Available under: doi: 10.3390/app11051994
BibTex
@article{Schmickl2021-03Wanke-58413,
  year={2021},
  doi={10.3390/app11051994},
  title={Wankelmut : A Simple Benchmark for the Evolvability of Behavioral Complexity},
  number={5},
  volume={11},
  journal={Applied Sciences},
  author={Schmickl, Thomas and Zahadat, Payam and Hamann, Heiko},
  note={Article Number: 1994}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58413">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58413"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58413/1/Schmickl_2-1t45klbhjaj720.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-30T07:08:52Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Zahadat, Payam</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58413/1/Schmickl_2-1t45klbhjaj720.pdf"/>
    <dc:language>eng</dc:language>
    <dc:creator>Schmickl, Thomas</dc:creator>
    <dc:contributor>Schmickl, Thomas</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:title>Wankelmut : A Simple Benchmark for the Evolvability of Behavioral Complexity</dcterms:title>
    <dcterms:issued>2021-03</dcterms:issued>
    <dc:creator>Zahadat, Payam</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-30T07:08:52Z</dcterms:available>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dcterms:abstract xml:lang="eng">In evolutionary robotics, an encoding of the control software that maps sensor data (input) to motor control values (output) is shaped by stochastic optimization methods to complete a predefined task. This approach is assumed to be beneficial compared to standard methods of controller design in those cases where no a priori model is available that could help to optimize performance. For robots that have to operate in unpredictable environments as well, an evolutionary robotics approach is favorable. We present here a simple-to-implement, but hard-to-pass benchmark to allow for quantifying the “evolvability” of such evolving robot control software towards increasing behavioral complexity. We demonstrate that such a model-free approach is not a free lunch, as already simple tasks can be unsolvable barriers for fully open-ended uninformed evolutionary computation techniques. We propose the “Wankelmut” task as an objective for an evolutionary approach that starts from scratch without pre-shaped controller software or any other informed approach that would force the behavior to be evolved in a desired way. Our main claim is that “Wankelmut” represents the simplest set of problems that makes plain-vanilla evolutionary computation fail. We demonstrate this by a series of simple standard evolutionary approaches using different fitness functions and standard artificial neural networks, as well as continuous-time recurrent neural networks. All our tested approaches failed. From our observations, we conclude that other evolutionary approaches will also fail if they do not per se favor or enforce the modularity of the evolved structures and if they do not freeze or protect already evolved functionalities from being destroyed again in the later evolutionary process. However, such a protection would require a priori knowledge of the solution of the task and contradict the “no a priori model” approach that is often claimed in evolutionary computation. Thus, we propose a hard-to-pass benchmark in order to make a strong statement for self-complexifying and generative approaches in evolutionary computation in general and in evolutionary robotics specifically. We anticipate that defining such a benchmark by seeking the simplest task that causes the evolutionary process to fail can be a valuable benchmark for promoting future development in the fields of artificial intelligence, evolutionary robotics, and artificial life.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen