ATQAM/MAST'20 : Joint Workshop on Aesthetic and Technical Quality Assessment of Multimedia and Media Analytics for Societal Trends

Lade...
Vorschaubild
Dateien
Guha_2-1squdcgebk7dz2.pdf
Guha_2-1squdcgebk7dz2.pdfGröße: 72.84 KBDownloads: 236
Datum
2020
Autor:innen
Guha, Tanaya
Kumar, Naveen
Lin, Weisi
Martinez, Victor
Somandepalli, Krishna
Narayanan, Shrikanth
Cheng, Wen-Huang
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
CHEN, Chang Wen, ed. and others. Proceedings of the 28th ACM International Conference on Multimedia (MM ’20). New York: ACM, 2020, pp. 4758-4760. ISBN 978-1-4503-7988-5. Available under: doi: 10.1145/3394171.3421895
Zusammenfassung

The Joint Workshop on Aesthetic and Technical Quality Assessment of Multimedia and Media Analytics for Societal Trends (ATQAM/ MAST) aims to bring together researchers and professionals working in fields ranging from computer vision, multimedia computing, multimodal signal processing to psychology and social sciences. It is divided into two tracks: ATQAM and MAST. ATQAM track: Visual quality assessment techniques can be divided into image and video technical quality assessment (IQA and VQA, or broadly TQA) and aesthetics quality assessment (AQA). While TQA is a long-standing field, having its roots in media compression, AQA is relatively young. Both have received increased attention with developments in deep learning. The topics have mostly been studied separately, even though they deal with similar aspects of the underlying subjective experience of media. The aim is to bring together individuals in the two fields of TQA and AQA for the sharing of ideas and discussions on current trends, developments, issues, and future directions. MAST track: The research area of media content analytics has been traditionally used to refer to applications involving inference of higher-level semantics from multimedia content. However, multimedia is typically created for human consumption, and we believe it is necessary to adopt a human-centered approach to this analysis, which would not only enable a better understanding of how viewers engage with content but also how they impact each other in the process.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Quality assessment, aesthetics assessment, visual enhancement, datasets, multimedia, societal impact, media consumption
Konferenz
MM '20: The 28th ACM International Conference on Multimedia (MM ’20), 12. Okt. 2020 - 16. Okt. 2020, Seattle
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690GUHA, Tanaya, Vlad HOSU, Dietmar SAUPE, Bastian GOLDLÜCKE, Naveen KUMAR, Weisi LIN, Victor MARTINEZ, Krishna SOMANDEPALLI, Shrikanth NARAYANAN, Wen-Huang CHENG, Kree MCLAUGHLIN, 2020. ATQAM/MAST'20 : Joint Workshop on Aesthetic and Technical Quality Assessment of Multimedia and Media Analytics for Societal Trends. MM '20: The 28th ACM International Conference on Multimedia (MM ’20). Seattle, 12. Okt. 2020 - 16. Okt. 2020. In: CHEN, Chang Wen, ed. and others. Proceedings of the 28th ACM International Conference on Multimedia (MM ’20). New York: ACM, 2020, pp. 4758-4760. ISBN 978-1-4503-7988-5. Available under: doi: 10.1145/3394171.3421895
BibTex
@inproceedings{Guha2020ATQAM-51420,
  year={2020},
  doi={10.1145/3394171.3421895},
  title={ATQAM/MAST'20 : Joint Workshop on Aesthetic and Technical Quality Assessment of Multimedia and Media Analytics for Societal Trends},
  isbn={978-1-4503-7988-5},
  publisher={ACM},
  address={New York},
  booktitle={Proceedings of the 28th ACM International Conference on Multimedia (MM ’20)},
  pages={4758--4760},
  editor={Chen, Chang Wen},
  author={Guha, Tanaya and Hosu, Vlad and Saupe, Dietmar and Goldlücke, Bastian and Kumar, Naveen and Lin, Weisi and Martinez, Victor and Somandepalli, Krishna and Narayanan, Shrikanth and Cheng, Wen-Huang and McLaughlin, Kree}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51420">
    <dc:creator>Cheng, Wen-Huang</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-19T13:24:35Z</dc:date>
    <dc:contributor>Cheng, Wen-Huang</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Martinez, Victor</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dc:creator>Hosu, Vlad</dc:creator>
    <dcterms:title>ATQAM/MAST'20 : Joint Workshop on Aesthetic and Technical Quality Assessment of Multimedia and Media Analytics for Societal Trends</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51420/1/Guha_2-1squdcgebk7dz2.pdf"/>
    <dc:creator>Kumar, Naveen</dc:creator>
    <dcterms:abstract xml:lang="eng">The Joint Workshop on Aesthetic and Technical Quality Assessment of Multimedia and Media Analytics for Societal Trends (ATQAM/ MAST) aims to bring together researchers and professionals working in fields ranging from computer vision, multimedia computing, multimodal signal processing to psychology and social sciences. It is divided into two tracks: ATQAM and MAST. ATQAM track: Visual quality assessment techniques can be divided into image and video technical quality assessment (IQA and VQA, or broadly TQA) and aesthetics quality assessment (AQA). While TQA is a long-standing field, having its roots in media compression, AQA is relatively young. Both have received increased attention with developments in deep learning. The topics have mostly been studied separately, even though they deal with similar aspects of the underlying subjective experience of media. The aim is to bring together individuals in the two fields of TQA and AQA for the sharing of ideas and discussions on current trends, developments, issues, and future directions. MAST track: The research area of media content analytics has been traditionally used to refer to applications involving inference of higher-level semantics from multimedia content. However, multimedia is typically created for human consumption, and we believe it is necessary to adopt a human-centered approach to this analysis, which would not only enable a better understanding of how viewers engage with content but also how they impact each other in the process.</dcterms:abstract>
    <dc:creator>Somandepalli, Krishna</dc:creator>
    <dc:contributor>McLaughlin, Kree</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51420"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-19T13:24:35Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51420/1/Guha_2-1squdcgebk7dz2.pdf"/>
    <dc:contributor>Lin, Weisi</dc:contributor>
    <dc:creator>Lin, Weisi</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <dc:creator>Martinez, Victor</dc:creator>
    <dc:creator>Narayanan, Shrikanth</dc:creator>
    <dc:contributor>Kumar, Naveen</dc:contributor>
    <dc:contributor>Narayanan, Shrikanth</dc:contributor>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dc:creator>McLaughlin, Kree</dc:creator>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Guha, Tanaya</dc:creator>
    <dc:contributor>Somandepalli, Krishna</dc:contributor>
    <dc:contributor>Guha, Tanaya</dc:contributor>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen