Publikation:

Influence of the Carbon Concentration on (p) Poly-SiCx Layer Properties With Focus on Parasitic Absorption in Front Side Poly-SiCx/SiOx Passivating Contacts of Solar Cells

Lade...
Vorschaubild

Dateien

Steffens_2-1sop72n19qrxa5.pdf
Steffens_2-1sop72n19qrxa5.pdfGröße: 616.56 KBDownloads: 331

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Journal of Photovoltaics. IEEE. 2020, 10(6), pp. 1624-1631. ISSN 2156-3381. eISSN 2156-3403. Available under: doi: 10.1109/JPHOTOV.2020.3023506

Zusammenfassung

Passivating contacts based on polycrystalline silicon (poly-Si) on an interfacial oxide are limited by parasitic absorption, which may be reduced by incorporation of foreign elements in the poly-Si layer. In this study, the influence of carbon incorporation in the concentration range of 6.9–21.5 at% on boron-doped polycrystalline silicon carbide (poly-SiCx) layer properties is investigated and interpreted in the context of an application as full-area passivating contact on the front side of a solar cell. For constant annealing parameters, higher carbon concentrations reduce the crystallinity of the layers. A high crystallinity in turn is confirmed to be a key parameter for the application in a solar cell as it ensures both low resistivity as well as low parasitic absorption. Low recombination current densities in the range of 7.2–12.2 fA/cm2 are determined for all layers on interfacial oxides on planar surfaces, whereas the differences are rather related to variations in the boron concentration than to the carbon concentration or the deposition parameters. A reduction of the (p) poly-SiCx layer thickness down to 10 nm would yield a parasitic absorption current density of 1.13 ± 0.13 mA/cm2. Using this value and the lowest measured recombination current density, a simple model predicts a theoretical solar cell efficiency limit of 26.7 ± 0.2%.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690STEFFENS, Jonathan, Swetlana WEIT, Johannes RINDER, Raphael GLATTHAAR, Sören MÖLLER, Giso HAHN, Barbara TERHEIDEN, 2020. Influence of the Carbon Concentration on (p) Poly-SiCx Layer Properties With Focus on Parasitic Absorption in Front Side Poly-SiCx/SiOx Passivating Contacts of Solar Cells. In: IEEE Journal of Photovoltaics. IEEE. 2020, 10(6), pp. 1624-1631. ISSN 2156-3381. eISSN 2156-3403. Available under: doi: 10.1109/JPHOTOV.2020.3023506
BibTex
@article{Steffens2020Influ-51229,
  year={2020},
  doi={10.1109/JPHOTOV.2020.3023506},
  title={Influence of the Carbon Concentration on (p) Poly-SiC<sub>x</sub> Layer Properties With Focus on Parasitic Absorption in Front Side Poly-SiC<sub>x</sub>/SiO<sub>x</sub> Passivating Contacts of Solar Cells},
  number={6},
  volume={10},
  issn={2156-3381},
  journal={IEEE Journal of Photovoltaics},
  pages={1624--1631},
  author={Steffens, Jonathan and Weit, Swetlana and Rinder, Johannes and Glatthaar, Raphael and Möller, Sören and Hahn, Giso and Terheiden, Barbara}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51229">
    <dc:creator>Möller, Sören</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-06T12:42:12Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51229"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51229/1/Steffens_2-1sop72n19qrxa5.pdf"/>
    <dc:contributor>Rinder, Johannes</dc:contributor>
    <dcterms:title>Influence of the Carbon Concentration on (p) Poly-SiC&lt;sub&gt;x&lt;/sub&gt; Layer Properties With Focus on Parasitic Absorption in Front Side Poly-SiC&lt;sub&gt;x&lt;/sub&gt;/SiO&lt;sub&gt;x&lt;/sub&gt; Passivating Contacts of Solar Cells</dcterms:title>
    <dc:creator>Glatthaar, Raphael</dc:creator>
    <dc:contributor>Terheiden, Barbara</dc:contributor>
    <dc:contributor>Steffens, Jonathan</dc:contributor>
    <dcterms:abstract xml:lang="eng">Passivating contacts based on polycrystalline silicon (poly-Si) on an interfacial oxide are limited by parasitic absorption, which may be reduced by incorporation of foreign elements in the poly-Si layer. In this study, the influence of carbon incorporation in the concentration range of 6.9–21.5 at% on boron-doped polycrystalline silicon carbide (poly-SiC&lt;sub&gt;x&lt;/sub&gt;) layer properties is investigated and interpreted in the context of an application as full-area passivating contact on the front side of a solar cell. For constant annealing parameters, higher carbon concentrations reduce the crystallinity of the layers. A high crystallinity in turn is confirmed to be a key parameter for the application in a solar cell as it ensures both low resistivity as well as low parasitic absorption. Low recombination current densities in the range of 7.2–12.2 fA/cm2 are determined for all layers on interfacial oxides on planar surfaces, whereas the differences are rather related to variations in the boron concentration than to the carbon concentration or the deposition parameters. A reduction of the (p) poly-SiC&lt;sub&gt;x&lt;/sub&gt; layer thickness down to 10 nm would yield a parasitic absorption current density of 1.13 ± 0.13 mA/cm2. Using this value and the lowest measured recombination current density, a simple model predicts a theoretical solar cell efficiency limit of 26.7 ± 0.2%.</dcterms:abstract>
    <dc:creator>Steffens, Jonathan</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-06T12:42:12Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Weit, Swetlana</dc:creator>
    <dc:creator>Hahn, Giso</dc:creator>
    <dc:creator>Rinder, Johannes</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51229/1/Steffens_2-1sop72n19qrxa5.pdf"/>
    <dc:contributor>Glatthaar, Raphael</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Hahn, Giso</dc:contributor>
    <dc:contributor>Möller, Sören</dc:contributor>
    <dc:contributor>Weit, Swetlana</dc:contributor>
    <dc:creator>Terheiden, Barbara</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Nein
Diese Publikation teilen