Publikation: Digital Assistance for Quality Assurance : Augmenting Workspaces Using Deep Learning for Tracking Near-Symmetrical Objects
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a digital assistance approach for applied metrology on near-symmetrical objects. In manufacturing, systematically measuring products for quality assurance is often a manual task, where the primary challenge for the workers lies in accurately identifying positions to measure and correctly documenting these measurements. This paper focuses on a use-case, which involves metrology of small near-symmetrical objects, such as LEGO bricks. We aim to support this task through situated visual measurement guides. Aligning these guides poses a major challenge, since fine grained details, such as embossed logos, serve as the only feature by which to retrieve an object's unique orientation. We present a two-step approach, which consists of (1) locating and orienting the object based on its shape, and then (2) disambiguating the object's rotational symmetry based on small visual features. We apply and compare different deep learning approaches and discuss our guidance system in the context of our use case.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BELO, João, Andreas FENDER, Tiare FEUCHTNER, Kaj GRØNBÆK, 2019. Digital Assistance for Quality Assurance : Augmenting Workspaces Using Deep Learning for Tracking Near-Symmetrical Objects. ISS '19: Interactive Surfaces and Spaces. Daejeon, Republic of Korea, 10. Nov. 2019 - 13. Nov. 2019. In: ISS '19 : Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces. New York, NY: ACM, 2019, pp. 275-287. ISBN 978-1-4503-6891-9. Available under: doi: 10.1145/3343055.3359699BibTex
@inproceedings{Belo2019Digit-55146, year={2019}, doi={10.1145/3343055.3359699}, title={Digital Assistance for Quality Assurance : Augmenting Workspaces Using Deep Learning for Tracking Near-Symmetrical Objects}, isbn={978-1-4503-6891-9}, publisher={ACM}, address={New York, NY}, booktitle={ISS '19 : Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces}, pages={275--287}, author={Belo, João and Fender, Andreas and Feuchtner, Tiare and Grønbæk, Kaj} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55146"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55146/1/Belo_2-1sgxhp1v7vwyk7.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55146/1/Belo_2-1sgxhp1v7vwyk7.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">We present a digital assistance approach for applied metrology on near-symmetrical objects. In manufacturing, systematically measuring products for quality assurance is often a manual task, where the primary challenge for the workers lies in accurately identifying positions to measure and correctly documenting these measurements. This paper focuses on a use-case, which involves metrology of small near-symmetrical objects, such as LEGO bricks. We aim to support this task through situated visual measurement guides. Aligning these guides poses a major challenge, since fine grained details, such as embossed logos, serve as the only feature by which to retrieve an object's unique orientation. We present a two-step approach, which consists of (1) locating and orienting the object based on its shape, and then (2) disambiguating the object's rotational symmetry based on small visual features. We apply and compare different deep learning approaches and discuss our guidance system in the context of our use case.</dcterms:abstract> <dcterms:title>Digital Assistance for Quality Assurance : Augmenting Workspaces Using Deep Learning for Tracking Near-Symmetrical Objects</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Fender, Andreas</dc:creator> <dc:contributor>Fender, Andreas</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55146"/> <dc:language>eng</dc:language> <dcterms:issued>2019</dcterms:issued> <dc:contributor>Feuchtner, Tiare</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-05T10:17:41Z</dcterms:available> <dc:creator>Feuchtner, Tiare</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-05T10:17:41Z</dc:date> <dc:contributor>Belo, João</dc:contributor> <dc:creator>Belo, João</dc:creator> <dc:creator>Grønbæk, Kaj</dc:creator> <dc:contributor>Grønbæk, Kaj</dc:contributor> </rdf:Description> </rdf:RDF>