Publikation:

Digital Assistance for Quality Assurance : Augmenting Workspaces Using Deep Learning for Tracking Near-Symmetrical Objects

Lade...
Vorschaubild

Dateien

Belo_2-1sgxhp1v7vwyk7.pdf
Belo_2-1sgxhp1v7vwyk7.pdfGröße: 7.46 MBDownloads: 206

Datum

2019

Autor:innen

Belo, João
Fender, Andreas
Grønbæk, Kaj

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ISS '19 : Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces. New York, NY: ACM, 2019, pp. 275-287. ISBN 978-1-4503-6891-9. Available under: doi: 10.1145/3343055.3359699

Zusammenfassung

We present a digital assistance approach for applied metrology on near-symmetrical objects. In manufacturing, systematically measuring products for quality assurance is often a manual task, where the primary challenge for the workers lies in accurately identifying positions to measure and correctly documenting these measurements. This paper focuses on a use-case, which involves metrology of small near-symmetrical objects, such as LEGO bricks. We aim to support this task through situated visual measurement guides. Aligning these guides poses a major challenge, since fine grained details, such as embossed logos, serve as the only feature by which to retrieve an object's unique orientation. We present a two-step approach, which consists of (1) locating and orienting the object based on its shape, and then (2) disambiguating the object's rotational symmetry based on small visual features. We apply and compare different deep learning approaches and discuss our guidance system in the context of our use case.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Metrology; Industry 4.0; Computer Vision; Augmented Reality; Focus+Context Tracking; Fine-grained Feature Recognition; Situated Instructions

Konferenz

ISS '19: Interactive Surfaces and Spaces, 10. Nov. 2019 - 13. Nov. 2019, Daejeon, Republic of Korea
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BELO, João, Andreas FENDER, Tiare FEUCHTNER, Kaj GRØNBÆK, 2019. Digital Assistance for Quality Assurance : Augmenting Workspaces Using Deep Learning for Tracking Near-Symmetrical Objects. ISS '19: Interactive Surfaces and Spaces. Daejeon, Republic of Korea, 10. Nov. 2019 - 13. Nov. 2019. In: ISS '19 : Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces. New York, NY: ACM, 2019, pp. 275-287. ISBN 978-1-4503-6891-9. Available under: doi: 10.1145/3343055.3359699
BibTex
@inproceedings{Belo2019Digit-55146,
  year={2019},
  doi={10.1145/3343055.3359699},
  title={Digital Assistance for Quality Assurance : Augmenting Workspaces Using Deep Learning for Tracking Near-Symmetrical Objects},
  isbn={978-1-4503-6891-9},
  publisher={ACM},
  address={New York, NY},
  booktitle={ISS '19 : Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces},
  pages={275--287},
  author={Belo, João and Fender, Andreas and Feuchtner, Tiare and Grønbæk, Kaj}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55146">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55146/1/Belo_2-1sgxhp1v7vwyk7.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55146/1/Belo_2-1sgxhp1v7vwyk7.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">We present a digital assistance approach for applied metrology on near-symmetrical objects. In manufacturing, systematically measuring products for quality assurance is often a manual task, where the primary challenge for the workers lies in accurately identifying positions to measure and correctly documenting these measurements. This paper focuses on a use-case, which involves metrology of small near-symmetrical objects, such as LEGO bricks. We aim to support this task through situated visual measurement guides. Aligning these guides poses a major challenge, since fine grained details, such as embossed logos, serve as the only feature by which to retrieve an object's unique orientation. We present a two-step approach, which consists of (1) locating and orienting the object based on its shape, and then (2) disambiguating the object's rotational symmetry based on small visual features. We apply and compare different deep learning approaches and discuss our guidance system in the context of our use case.</dcterms:abstract>
    <dcterms:title>Digital Assistance for Quality Assurance : Augmenting Workspaces Using Deep Learning for Tracking Near-Symmetrical Objects</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Fender, Andreas</dc:creator>
    <dc:contributor>Fender, Andreas</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55146"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2019</dcterms:issued>
    <dc:contributor>Feuchtner, Tiare</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-05T10:17:41Z</dcterms:available>
    <dc:creator>Feuchtner, Tiare</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-05T10:17:41Z</dc:date>
    <dc:contributor>Belo, João</dc:contributor>
    <dc:creator>Belo, João</dc:creator>
    <dc:creator>Grønbæk, Kaj</dc:creator>
    <dc:contributor>Grønbæk, Kaj</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 1 von 1
VersionDatumZusammenfassung
1*
2021-10-05 10:17:41
* Ausgewählte Version