Publikation: On randomly periodic strongly dependent time series, with applications to neural respiratory drive data
Lade...
Dateien
Datum
2025
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Communications in Statistics: Theory and Methods. Taylor & Francis. 2025, 54(7), S. 2005-2032. ISSN 0361-0926. eISSN 1532-415X. Verfügbar unter: doi: 10.1080/03610926.2024.2355582
Zusammenfassung
We consider time series with a seasonal component that varies randomly in length and shape. The shape parameters of the seasonal process, as well as the noise component, are stationary and exhibit long-range dependence. A functional limit theorem for the estimated parameter process leads to asymptotic inference under suitable conditions on the observational grid. The model is motivated by a study of the effect of body positioning on respiratory muscles during weaning (Walterspacher et al. 2017).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Long memory, state space model, functional data analysis, mechanical ventilation, neural respiratory drive, surface electromyography (sEMG)
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BERAN, Jan, Jeremy NÄSCHER, Stephan WALTERSPACHER, 2025. On randomly periodic strongly dependent time series, with applications to neural respiratory drive data. In: Communications in Statistics: Theory and Methods. Taylor & Francis. 2025, 54(7), S. 2005-2032. ISSN 0361-0926. eISSN 1532-415X. Verfügbar unter: doi: 10.1080/03610926.2024.2355582BibTex
@article{Beran2025-04-03rando-70215, title={On randomly periodic strongly dependent time series, with applications to neural respiratory drive data}, year={2025}, doi={10.1080/03610926.2024.2355582}, number={7}, volume={54}, issn={0361-0926}, journal={Communications in Statistics: Theory and Methods}, pages={2005--2032}, author={Beran, Jan and Näscher, Jeremy and Walterspacher, Stephan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70215"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70215/1/Beran_2-1rwnjeob8xzzi8.pdf"/> <dc:creator>Näscher, Jeremy</dc:creator> <dc:contributor>Beran, Jan</dc:contributor> <dcterms:issued>2025-04-03</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Walterspacher, Stephan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-21T07:35:39Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Beran, Jan</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70215"/> <dc:creator>Walterspacher, Stephan</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>On randomly periodic strongly dependent time series, with applications to neural respiratory drive data</dcterms:title> <dcterms:abstract>We consider time series with a seasonal component that varies randomly in length and shape. The shape parameters of the seasonal process, as well as the noise component, are stationary and exhibit long-range dependence. A functional limit theorem for the estimated parameter process leads to asymptotic inference under suitable conditions on the observational grid. The model is motivated by a study of the effect of body positioning on respiratory muscles during weaning (Walterspacher et al. 2017).</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-21T07:35:39Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70215/1/Beran_2-1rwnjeob8xzzi8.pdf"/> <dc:contributor>Näscher, Jeremy</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja