Publikation: Electro-rheological fluids under random influences : martingale and strong solutions
Lade...
Dateien
Datum
2019
Autor:innen
Breit, Dominic
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Stochastics and Partial Differential Equations: Analysis and Computations. Springer. 2019, 7(4), pp. 699-745. ISSN 2194-0401. eISSN 2194-041X. Available under: doi: 10.1007/s40072-019-00138-6
Zusammenfassung
We study generalised Navier–Stokes equations governing the motion of an electro-rheological fluid subject to stochastic perturbation. Stochastic effects are implemented through (i) random initial data, (ii) a forcing term in the momentum equation represented by a multiplicative white noise and (iii) a random character of the variable exponent p=p(ω,t,x) (as a result of a random electric field). We show the existence of a weak martingale solution provided the variable exponent satisfies p≥p−>3n/n+2 (p−>1 in two dimensions). Under additional assumptions we obtain also stochastically strong solutions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Electro-rheological fluids, Stochastic Navier–Stokes equations, Martingale solution, Pathwise solution
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BREIT, Dominic, Franz GMEINEDER, 2019. Electro-rheological fluids under random influences : martingale and strong solutions. In: Stochastics and Partial Differential Equations: Analysis and Computations. Springer. 2019, 7(4), pp. 699-745. ISSN 2194-0401. eISSN 2194-041X. Available under: doi: 10.1007/s40072-019-00138-6BibTex
@article{Breit2019-12Elect-53931, year={2019}, doi={10.1007/s40072-019-00138-6}, title={Electro-rheological fluids under random influences : martingale and strong solutions}, number={4}, volume={7}, issn={2194-0401}, journal={Stochastics and Partial Differential Equations: Analysis and Computations}, pages={699--745}, author={Breit, Dominic and Gmeineder, Franz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53931"> <dcterms:abstract xml:lang="eng">We study generalised Navier–Stokes equations governing the motion of an electro-rheological fluid subject to stochastic perturbation. Stochastic effects are implemented through (i) random initial data, (ii) a forcing term in the momentum equation represented by a multiplicative white noise and (iii) a random character of the variable exponent p=p(ω,t,x) (as a result of a random electric field). We show the existence of a weak martingale solution provided the variable exponent satisfies p≥p<sup>−</sup>>3n/n+2 (p<sup>−</sup>>1 in two dimensions). Under additional assumptions we obtain also stochastically strong solutions.</dcterms:abstract> <dc:creator>Breit, Dominic</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53931/1/Breit_2-1rwiucjmoky0a1.pdf"/> <dc:creator>Gmeineder, Franz</dc:creator> <dc:contributor>Breit, Dominic</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Electro-rheological fluids under random influences : martingale and strong solutions</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53931/1/Breit_2-1rwiucjmoky0a1.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Gmeineder, Franz</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53931"/> <dcterms:issued>2019-12</dcterms:issued> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T11:45:29Z</dcterms:available> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T11:45:29Z</dc:date> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt