Publikation: Interactive Feature Space Extension for Multidimensional Data Projection
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Projecting multi-dimensional data to a lower-dimensional visual display is a commonly used approach for identifying and analyzing patterns in data. Many dimensionality reduction techniques exist for generating visual embeddings, but it is often hard to avoid cluttered projections when the data is large in size and noisy. For many application users who are not machine learning experts, it is difficult to control the process in order to improve the “readability” of the projection and at the same time to understand their quality. In this paper, we propose a simple interactive feature transformation approach that allows the analyst to de-clutter the visualization by gradually transforming the original feature space based on existing class knowledge. By changing a single parameter, the user can easily decide the desired trade-off between structural preservation and the visual quality during the transforming process. The proposed approach integrates semi-interactive feature transformation techniques as well as a variety of quality measures to help analysts generate uncluttered projections and understand their quality.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PÉREZ, Daniel, Leishi ZHANG, Matthias SCHAEFER, Tobias SCHRECK, Daniel A. KEIM, Ignacio DIAZ, 2015. Interactive Feature Space Extension for Multidimensional Data Projection. In: Neurocomputing. 2015, 150(B), pp. 611-626. ISSN 0925-2312. eISSN 1872-8286. Available under: doi: 10.1016/j.neucom.2014.09.061BibTex
@article{Perez2015Inter-29973, year={2015}, doi={10.1016/j.neucom.2014.09.061}, title={Interactive Feature Space Extension for Multidimensional Data Projection}, number={B}, volume={150}, issn={0925-2312}, journal={Neurocomputing}, pages={611--626}, author={Pérez, Daniel and Zhang, Leishi and Schaefer, Matthias and Schreck, Tobias and Keim, Daniel A. and Diaz, Ignacio} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29973"> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:contributor>Schaefer, Matthias</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Diaz, Ignacio</dc:creator> <dc:creator>Zhang, Leishi</dc:creator> <dc:contributor>Pérez, Daniel</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-23T14:45:52Z</dc:date> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Zhang, Leishi</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29973/1/Perez_0-267517.pdf"/> <dcterms:abstract xml:lang="eng">Projecting multi-dimensional data to a lower-dimensional visual display is a commonly used approach for identifying and analyzing patterns in data. Many dimensionality reduction techniques exist for generating visual embeddings, but it is often hard to avoid cluttered projections when the data is large in size and noisy. For many application users who are not machine learning experts, it is difficult to control the process in order to improve the “readability” of the projection and at the same time to understand their quality. In this paper, we propose a simple interactive feature transformation approach that allows the analyst to de-clutter the visualization by gradually transforming the original feature space based on existing class knowledge. By changing a single parameter, the user can easily decide the desired trade-off between structural preservation and the visual quality during the transforming process. The proposed approach integrates semi-interactive feature transformation techniques as well as a variety of quality measures to help analysts generate uncluttered projections and understand their quality.</dcterms:abstract> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Diaz, Ignacio</dc:contributor> <dcterms:issued>2015</dcterms:issued> <dc:creator>Schaefer, Matthias</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-23T14:45:52Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29973/1/Perez_0-267517.pdf"/> <dc:creator>Pérez, Daniel</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Interactive Feature Space Extension for Multidimensional Data Projection</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29973"/> </rdf:Description> </rdf:RDF>