Publikation:

Interactive Feature Space Extension for Multidimensional Data Projection

Lade...
Vorschaubild

Dateien

Perez_0-267517.pdf
Perez_0-267517.pdfGröße: 1.38 MBDownloads: 363

Datum

2015

Autor:innen

Pérez, Daniel
Schaefer, Matthias
Diaz, Ignacio

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Neurocomputing. 2015, 150(B), pp. 611-626. ISSN 0925-2312. eISSN 1872-8286. Available under: doi: 10.1016/j.neucom.2014.09.061

Zusammenfassung

Projecting multi-dimensional data to a lower-dimensional visual display is a commonly used approach for identifying and analyzing patterns in data. Many dimensionality reduction techniques exist for generating visual embeddings, but it is often hard to avoid cluttered projections when the data is large in size and noisy. For many application users who are not machine learning experts, it is difficult to control the process in order to improve the “readability” of the projection and at the same time to understand their quality. In this paper, we propose a simple interactive feature transformation approach that allows the analyst to de-clutter the visualization by gradually transforming the original feature space based on existing class knowledge. By changing a single parameter, the user can easily decide the desired trade-off between structural preservation and the visual quality during the transforming process. The proposed approach integrates semi-interactive feature transformation techniques as well as a variety of quality measures to help analysts generate uncluttered projections and understand their quality.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Feature transformation, Dimensionality reduction, Multidimensional data projection

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PÉREZ, Daniel, Leishi ZHANG, Matthias SCHAEFER, Tobias SCHRECK, Daniel A. KEIM, Ignacio DIAZ, 2015. Interactive Feature Space Extension for Multidimensional Data Projection. In: Neurocomputing. 2015, 150(B), pp. 611-626. ISSN 0925-2312. eISSN 1872-8286. Available under: doi: 10.1016/j.neucom.2014.09.061
BibTex
@article{Perez2015Inter-29973,
  year={2015},
  doi={10.1016/j.neucom.2014.09.061},
  title={Interactive Feature Space Extension for Multidimensional Data Projection},
  number={B},
  volume={150},
  issn={0925-2312},
  journal={Neurocomputing},
  pages={611--626},
  author={Pérez, Daniel and Zhang, Leishi and Schaefer, Matthias and Schreck, Tobias and Keim, Daniel A. and Diaz, Ignacio}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29973">
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:contributor>Schaefer, Matthias</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Diaz, Ignacio</dc:creator>
    <dc:creator>Zhang, Leishi</dc:creator>
    <dc:contributor>Pérez, Daniel</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-23T14:45:52Z</dc:date>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Zhang, Leishi</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29973/1/Perez_0-267517.pdf"/>
    <dcterms:abstract xml:lang="eng">Projecting multi-dimensional data to a lower-dimensional visual display is a commonly used approach for identifying and analyzing patterns in data. Many dimensionality reduction techniques exist for generating visual embeddings, but it is often hard to avoid cluttered projections when the data is large in size and noisy. For many application users who are not machine learning experts, it is difficult to control the process in order to improve the “readability” of the projection and at the same time to understand their quality. In this paper, we propose a simple interactive feature transformation approach that allows the analyst to de-clutter the visualization by gradually transforming the original feature space based on existing class knowledge. By changing a single parameter, the user can easily decide the desired trade-off between structural preservation and the visual quality during the transforming process. The proposed approach integrates semi-interactive feature transformation techniques as well as a variety of quality measures to help analysts generate uncluttered projections and understand their quality.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Diaz, Ignacio</dc:contributor>
    <dcterms:issued>2015</dcterms:issued>
    <dc:creator>Schaefer, Matthias</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-23T14:45:52Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29973/1/Perez_0-267517.pdf"/>
    <dc:creator>Pérez, Daniel</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Interactive Feature Space Extension for Multidimensional Data Projection</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29973"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen