Publikation:

Peering into the world of wild passerines with 3D-SOCS : Synchronized video capture and posture estimation

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): EXC 2117‐422037984

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Methods in Ecology and Evolution. Wiley. ISSN 2041-2096. eISSN 2041-210X. Verfügbar unter: doi: 10.1111/2041-210x.70051

Zusammenfassung

  1. Collection of large behavioural data-sets on wild animals in natural habitats is vital in ecology and evolution studies. Recent progress in machine learning and computer vision, combined with inexpensive microcomputers, has unlocked a new frontier of fine-scale markerless measurements.

  2. Here, we leverage these advancements to develop a 3D Synchronized Outdoor Camera System (3D-SOCS): an inexpensive, mobile and automated method for collecting behavioural data on wild animals using synchronized video frames from Raspberry Pi controlled cameras. Accuracy tests demonstrate 3D-SOCS' markerless tracking can estimate postures with a 3 mm tolerance.

  3. To illustrate its research potential, we place 3D-SOCS in the field and conduct a stimulus presentation experiment. We estimate 3D postures and trajectories for multiple individuals of different bird species, and use this data to characterize the visual field configuration of wild great tits (Parus major), a model species in behavioural ecology. We find their optic axes at ~±60° azimuth and −5° elevation. Furthermore, birds exhibit functional lateralization in their use of the right eye with conspecific stimulus, and show individual differences in lateralization. We also show that birds' convex hulls predicts body weight, highlighting 3D-SOCS' potential for non-invasive population monitoring.

  4. 3D-SOCS is a first-of-its-kind camera system for wild research, presenting exciting potential to measure fine-scaled behaviour and morphology in wild birds.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

3D tracking, field methods, lateralization, machine learning, machine vision, monitoring (population ecology), Parus major, visual field

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHIMENTO, Michael, Hoi Hang CHAN, Lucy M. APLIN, Fumihiro KANO, 2025. Peering into the world of wild passerines with 3D-SOCS : Synchronized video capture and posture estimation. In: Methods in Ecology and Evolution. Wiley. ISSN 2041-2096. eISSN 2041-210X. Verfügbar unter: doi: 10.1111/2041-210x.70051
BibTex
@article{Chimento2025-06-11Peeri-73694,
  title={Peering into the world of wild passerines with 3D-SOCS : Synchronized video capture and posture estimation},
  year={2025},
  doi={10.1111/2041-210x.70051},
  issn={2041-2096},
  journal={Methods in Ecology and Evolution},
  author={Chimento, Michael and Chan, Hoi Hang and Aplin, Lucy M. and Kano, Fumihiro}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73694">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-25T07:13:44Z</dcterms:available>
    <dc:creator>Chan, Hoi Hang</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Chimento, Michael</dc:creator>
    <dc:contributor>Chan, Hoi Hang</dc:contributor>
    <dc:creator>Aplin, Lucy M.</dc:creator>
    <dcterms:abstract>1. Collection of large behavioural data-sets on wild animals in natural habitats is vital in ecology and evolution studies. Recent progress in machine learning and computer vision, combined with inexpensive microcomputers, has unlocked a new frontier of fine-scale markerless measurements.

2. Here, we leverage these advancements to develop a 3D Synchronized Outdoor Camera System (3D-SOCS): an inexpensive, mobile and automated method for collecting behavioural data on wild animals using synchronized video frames from Raspberry Pi controlled cameras. Accuracy tests demonstrate 3D-SOCS' markerless tracking can estimate postures with a 3 mm tolerance.

3. To illustrate its research potential, we place 3D-SOCS in the field and conduct a stimulus presentation experiment. We estimate 3D postures and trajectories for multiple individuals of different bird species, and use this data to characterize the visual field configuration of wild great tits (Parus major), a model species in behavioural ecology. We find their optic axes at ~±60° azimuth and −5° elevation. Furthermore, birds exhibit functional lateralization in their use of the right eye with conspecific stimulus, and show individual differences in lateralization. We also show that birds' convex hulls predicts body weight, highlighting 3D-SOCS' potential for non-invasive population monitoring.

4. 3D-SOCS is a first-of-its-kind camera system for wild research, presenting exciting potential to measure fine-scaled behaviour and morphology in wild birds.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
    <dc:contributor>Kano, Fumihiro</dc:contributor>
    <dc:creator>Kano, Fumihiro</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-25T07:13:44Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73694"/>
    <dcterms:title>Peering into the world of wild passerines with 3D-SOCS : Synchronized video capture and posture estimation</dcterms:title>
    <dcterms:issued>2025-06-11</dcterms:issued>
    <dc:contributor>Aplin, Lucy M.</dc:contributor>
    <dc:contributor>Chimento, Michael</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen