Publikation: The Dynamic q-Valuation of a Contingent Claim in a Continuous Market Model
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this article, we consider a new valuation, which we call dynamic q-valuation C~qt(B) of a contingent claim in a semimartingale model with a general continuous filtration. We prove that this valuation has the properties of a convex risk valuation and by making use of the (p, B)-optimal martingale measure introduced in Mania et al. we obtain a backward semimartingale equation (BSE) to characterize the dynamic q-valuation. We prove the convexity of this q-valuation its time-consistency property. Given q and ^q, we consider the ∈ f-convolution of C~q(B) and C~^q(B). This new risk valuation is shown to have an explicitly stated representation as a backward semimartingale equation (BSE). Furthermore, we discuss the convergence of a sequence of ∈ f-valuation of C~q(B). So, starting from the q-valuation we derive several new risk-measures which allow for an explicit representation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KOHLMANN, Michael, Dewen XIONG, 2009. The Dynamic q-Valuation of a Contingent Claim in a Continuous Market Model. In: Stochastic Analysis and Applications. 2009, 27(1), pp. 95-124. Available under: doi: 10.1080/07362990802564814BibTex
@article{Kohlmann2009Dynam-781, year={2009}, doi={10.1080/07362990802564814}, title={The Dynamic q-Valuation of a Contingent Claim in a Continuous Market Model}, number={1}, volume={27}, journal={Stochastic Analysis and Applications}, pages={95--124}, author={Kohlmann, Michael and Xiong, Dewen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/781"> <dcterms:title>The Dynamic q-Valuation of a Contingent Claim in a Continuous Market Model</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Kohlmann, Michael</dc:creator> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2009</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:51Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/781"/> <dc:contributor>Xiong, Dewen</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:51Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Xiong, Dewen</dc:creator> <dcterms:abstract xml:lang="eng">In this article, we consider a new valuation, which we call dynamic q-valuation C~qt(B) of a contingent claim in a semimartingale model with a general continuous filtration. We prove that this valuation has the properties of a convex risk valuation and by making use of the (p, B)-optimal martingale measure introduced in Mania et al. we obtain a backward semimartingale equation (BSE) to characterize the dynamic q-valuation. We prove the convexity of this q-valuation its time-consistency property. Given q and ^q, we consider the ∈ f-convolution of C~q(B) and C~^q(B). This new risk valuation is shown to have an explicitly stated representation as a backward semimartingale equation (BSE). Furthermore, we discuss the convergence of a sequence of ∈ f-valuation of C~q(B). So, starting from the q-valuation we derive several new risk-measures which allow for an explicit representation.</dcterms:abstract> <dcterms:bibliographicCitation>Publ. in: Stochastic Analysis and Applications 27 (2009), 1, pp. 95-124</dcterms:bibliographicCitation> <dc:contributor>Kohlmann, Michael</dc:contributor> </rdf:Description> </rdf:RDF>