Publikation: An Inflated Multivariate Integer Count Hurdle Model : an Application to Bid and Ask Quote Dynamics
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we develop a model for the conditional inflated multivariate density of integer count variables with domain Zn. Our modelling framework is based on a copula approach and can be used for a broad set of applications where the primary characteristics of the data are: (i) discrete domain, (ii) the tendency to cluster at certain outcome values and (iii) contemporaneous dependence. These kind of properties can be found for high or ultra-high frequent data describing the trading process on financial markets. We present a straightforward method of sampling from such an inflated multivariate density through the application of an Independence Metropolis-Hastings sampling algorithm. We demonstrate the power of our approach by modelling the conditional bivariate density of bid and ask quote changes in a high frequency setup. We show how to derive the implied conditional discrete density of the bid-ask spread, taking quote clusterings (at multiples of 5 ticks) into account.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BIEN, Katarzyna, Ingmar NOLTE, Winfried POHLMEIER, 2007. An Inflated Multivariate Integer Count Hurdle Model : an Application to Bid and Ask Quote DynamicsBibTex
@techreport{Bien2007Infla-12020, year={2007}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={An Inflated Multivariate Integer Count Hurdle Model : an Application to Bid and Ask Quote Dynamics}, number={2007/04}, author={Bien, Katarzyna and Nolte, Ingmar and Pohlmeier, Winfried} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12020"> <dc:format>application/pdf</dc:format> <dc:contributor>Pohlmeier, Winfried</dc:contributor> <dc:contributor>Bien, Katarzyna</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:11Z</dcterms:available> <dc:contributor>Nolte, Ingmar</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12020"/> <dcterms:abstract xml:lang="eng">In this paper we develop a model for the conditional inflated multivariate density of integer count variables with domain Zn. Our modelling framework is based on a copula approach and can be used for a broad set of applications where the primary characteristics of the data are: (i) discrete domain, (ii) the tendency to cluster at certain outcome values and (iii) contemporaneous dependence. These kind of properties can be found for high or ultra-high frequent data describing the trading process on financial markets. We present a straightforward method of sampling from such an inflated multivariate density through the application of an Independence Metropolis-Hastings sampling algorithm. We demonstrate the power of our approach by modelling the conditional bivariate density of bid and ask quote changes in a high frequency setup. We show how to derive the implied conditional discrete density of the bid-ask spread, taking quote clusterings (at multiples of 5 ticks) into account.</dcterms:abstract> <dc:creator>Bien, Katarzyna</dc:creator> <dcterms:issued>2007</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12020/1/dp07_04.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12020/1/dp07_04.pdf"/> <dc:creator>Nolte, Ingmar</dc:creator> <dc:creator>Pohlmeier, Winfried</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:title>An Inflated Multivariate Integer Count Hurdle Model : an Application to Bid and Ask Quote Dynamics</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:11Z</dc:date> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>