Publikation:

An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal for Numerical Methods in Fluids. Wiley-Blackwell. 2019, 89(10), pp. 407-429. ISSN 0271-2091. eISSN 1097-0363. Available under: doi: 10.1002/fld.4701

Zusammenfassung

In this paper, we analyze a stabilized equal-order finite element approximation for the Stokes equations on anisotropic meshes. In particular, we allow arbitrary anisotropies in a subdomain, for example, along the boundary of the domain, with the only condition that a maximum angle is fulfilled in each element. This discretization is motivated by applications on moving domains as arising, for example, in fluid-structure interaction or multiphase-flow problems. To deal with the anisotropies, we define a modification of the original continuous interior penalty stabilization approach. We show analytically the discrete stability of the method and convergence of order O(h3/2) in the energy norm and O(h5/2) in the L2-norm of the velocities. We present numerical examples for a linear Stokes problem and for a nonlinear fluid-structure interaction problem, which substantiate the analytical results and show the capabilities of the approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FREI, Stefan, 2019. An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes. In: International Journal for Numerical Methods in Fluids. Wiley-Blackwell. 2019, 89(10), pp. 407-429. ISSN 0271-2091. eISSN 1097-0363. Available under: doi: 10.1002/fld.4701
BibTex
@article{Frei2019edgeb-55771,
  year={2019},
  doi={10.1002/fld.4701},
  title={An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes},
  number={10},
  volume={89},
  issn={0271-2091},
  journal={International Journal for Numerical Methods in Fluids},
  pages={407--429},
  author={Frei, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55771">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T10:14:44Z</dc:date>
    <dc:contributor>Frei, Stefan</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">In this paper, we analyze a stabilized equal-order finite element approximation for the Stokes equations on anisotropic meshes. In particular, we allow arbitrary anisotropies in a subdomain, for example, along the boundary of the domain, with the only condition that a maximum angle is fulfilled in each element. This discretization is motivated by applications on moving domains as arising, for example, in fluid-structure interaction or multiphase-flow problems. To deal with the anisotropies, we define a modification of the original continuous interior penalty stabilization approach. We show analytically the discrete stability of the method and convergence of order O(h&lt;sup&gt;3/2&lt;/sup&gt;) in the energy norm and O(h&lt;sup&gt;5/2&lt;/sup&gt;) in the L&lt;sup&gt;2&lt;/sup&gt;-norm of the velocities. We present numerical examples for a linear Stokes problem and for a nonlinear fluid-structure interaction problem, which substantiate the analytical results and show the capabilities of the approach.</dcterms:abstract>
    <dcterms:title>An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55771"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T10:14:44Z</dcterms:available>
    <dc:creator>Frei, Stefan</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen