Publikation: An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we analyze a stabilized equal-order finite element approximation for the Stokes equations on anisotropic meshes. In particular, we allow arbitrary anisotropies in a subdomain, for example, along the boundary of the domain, with the only condition that a maximum angle is fulfilled in each element. This discretization is motivated by applications on moving domains as arising, for example, in fluid-structure interaction or multiphase-flow problems. To deal with the anisotropies, we define a modification of the original continuous interior penalty stabilization approach. We show analytically the discrete stability of the method and convergence of order O(h3/2) in the energy norm and O(h5/2) in the L2-norm of the velocities. We present numerical examples for a linear Stokes problem and for a nonlinear fluid-structure interaction problem, which substantiate the analytical results and show the capabilities of the approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FREI, Stefan, 2019. An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes. In: International Journal for Numerical Methods in Fluids. Wiley-Blackwell. 2019, 89(10), pp. 407-429. ISSN 0271-2091. eISSN 1097-0363. Available under: doi: 10.1002/fld.4701BibTex
@article{Frei2019edgeb-55771, year={2019}, doi={10.1002/fld.4701}, title={An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes}, number={10}, volume={89}, issn={0271-2091}, journal={International Journal for Numerical Methods in Fluids}, pages={407--429}, author={Frei, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55771"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T10:14:44Z</dc:date> <dc:contributor>Frei, Stefan</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">In this paper, we analyze a stabilized equal-order finite element approximation for the Stokes equations on anisotropic meshes. In particular, we allow arbitrary anisotropies in a subdomain, for example, along the boundary of the domain, with the only condition that a maximum angle is fulfilled in each element. This discretization is motivated by applications on moving domains as arising, for example, in fluid-structure interaction or multiphase-flow problems. To deal with the anisotropies, we define a modification of the original continuous interior penalty stabilization approach. We show analytically the discrete stability of the method and convergence of order O(h<sup>3/2</sup>) in the energy norm and O(h<sup>5/2</sup>) in the L<sup>2</sup>-norm of the velocities. We present numerical examples for a linear Stokes problem and for a nonlinear fluid-structure interaction problem, which substantiate the analytical results and show the capabilities of the approach.</dcterms:abstract> <dcterms:title>An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2019</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55771"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T10:14:44Z</dcterms:available> <dc:creator>Frei, Stefan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>