Publikation: LEXpander : Applying colexification networks to automated lexicon expansion
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Recent approaches to text analysis from social media and other corpora rely on word lists to detect topics, measure meaning, or to select relevant documents. These lists are often generated by applying computational lexicon expansion methods to small, manually curated sets of seed words. Despite the wide use of this approach, we still lack an exhaustive comparative analysis of the performance of lexicon expansion methods and how they can be improved with additional linguistic data. In this work, we present LEXpander, a method for lexicon expansion that leverages novel data on colexification, i.e., semantic networks connecting words with multiple meanings according to shared senses. We evaluate LEXpander in a benchmark including widely used methods for lexicon expansion based on word embedding models and synonym networks. We find that LEXpander outperforms existing approaches in terms of both precision and the trade-off between precision and recall of generated word lists in a variety of tests. Our benchmark includes several linguistic categories, as words relating to the financial area or to the concept of friendship, and sentiment variables in English and German. We also show that the expanded word lists constitute a high-performing text analysis method in application cases to various English corpora. This way, LEXpander poses a systematic automated solution to expand short lists of words into exhaustive and accurate word lists that can closely approximate word lists generated by experts in psychology and linguistics.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DI NATALE, Anna, David GARCIA, 2024. LEXpander : Applying colexification networks to automated lexicon expansion. In: Behavior Research Methods. Springer. 2024, 56(2), S. 952-967. ISSN 1554-351X. eISSN 1554-3528. Verfügbar unter: doi: 10.3758/s13428-023-02063-yBibTex
@article{DiNatale2024LEXpa-66557, title={LEXpander : Applying colexification networks to automated lexicon expansion}, year={2024}, doi={10.3758/s13428-023-02063-y}, number={2}, volume={56}, issn={1554-351X}, journal={Behavior Research Methods}, pages={952--967}, author={Di Natale, Anna and Garcia, David} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66557"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66557/1/DiNatale_2-1r66ziaw9clrb5.PDF"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:issued>2024</dcterms:issued> <dc:creator>Garcia, David</dc:creator> <dcterms:title>LEXpander : Applying colexification networks to automated lexicon expansion</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66557/1/DiNatale_2-1r66ziaw9clrb5.PDF"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T12:40:15Z</dcterms:available> <dcterms:abstract>Recent approaches to text analysis from social media and other corpora rely on word lists to detect topics, measure meaning, or to select relevant documents. These lists are often generated by applying computational lexicon expansion methods to small, manually curated sets of seed words. Despite the wide use of this approach, we still lack an exhaustive comparative analysis of the performance of lexicon expansion methods and how they can be improved with additional linguistic data. In this work, we present LEXpander, a method for lexicon expansion that leverages novel data on colexification, i.e., semantic networks connecting words with multiple meanings according to shared senses. We evaluate LEXpander in a benchmark including widely used methods for lexicon expansion based on word embedding models and synonym networks. We find that LEXpander outperforms existing approaches in terms of both precision and the trade-off between precision and recall of generated word lists in a variety of tests. Our benchmark includes several linguistic categories, as words relating to the financial area or to the concept of friendship, and sentiment variables in English and German. We also show that the expanded word lists constitute a high-performing text analysis method in application cases to various English corpora. This way, LEXpander poses a systematic automated solution to expand short lists of words into exhaustive and accurate word lists that can closely approximate word lists generated by experts in psychology and linguistics.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T12:40:15Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Garcia, David</dc:contributor> <dc:creator>Di Natale, Anna</dc:creator> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66557"/> <dc:contributor>Di Natale, Anna</dc:contributor> </rdf:Description> </rdf:RDF>