Publikation: Model Order Reduction for PDE Constrained Optimization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The optimization and control of systems governed by partial differential equations (PDEs) usually requires numerous evaluations of the forward problem or the optimality system. Despite the fact that many recent efforts, many of which are reported in this book, have been made to limit or reduce the number of evaluations to 5–10, this cannot be achieved in all situations and even if this is possible, these evaluations may still require a formidable computational effort. For situations where this effort is not acceptable, model order reduction can be a means to significantly reduce the required computational resources. Here, we will survey some of the most popular approaches that can be used for this purpose. In particular, we address the issues arising in the strategies discretize-then-optimize, in which the optimality system of the reduced-order model has to be solved, and optimize-then-discretize, where a reduced-order model of the optimality system has to be found. The methods discussed include versions of proper orthogonal decomposition (POD) adapted to PDE constrained optimization as well as system-theoretic methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BENNER, Peter, Ekkehard SACHS, Stefan VOLKWEIN, 2014. Model Order Reduction for PDE Constrained Optimization. In: LEUGERING, Günter, ed. and others. Trends in PDE Constrained Optimization. Cham [u.a.]: Springer, 2014, pp. 303-326. International Series of Numerical Mathematics. 165. ISBN 978-3-319-05082-9. Available under: doi: 10.1007/978-3-319-05083-6_19BibTex
@incollection{Benner2014Model-32552, year={2014}, doi={10.1007/978-3-319-05083-6_19}, title={Model Order Reduction for PDE Constrained Optimization}, number={165}, isbn={978-3-319-05082-9}, publisher={Springer}, address={Cham [u.a.]}, series={International Series of Numerical Mathematics}, booktitle={Trends in PDE Constrained Optimization}, pages={303--326}, editor={Leugering, Günter}, author={Benner, Peter and Sachs, Ekkehard and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32552"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2014</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:contributor>Benner, Peter</dc:contributor> <dc:creator>Volkwein, Stefan</dc:creator> <dcterms:abstract xml:lang="eng">The optimization and control of systems governed by partial differential equations (PDEs) usually requires numerous evaluations of the forward problem or the optimality system. Despite the fact that many recent efforts, many of which are reported in this book, have been made to limit or reduce the number of evaluations to 5–10, this cannot be achieved in all situations and even if this is possible, these evaluations may still require a formidable computational effort. For situations where this effort is not acceptable, model order reduction can be a means to significantly reduce the required computational resources. Here, we will survey some of the most popular approaches that can be used for this purpose. In particular, we address the issues arising in the strategies discretize-then-optimize, in which the optimality system of the reduced-order model has to be solved, and optimize-then-discretize, where a reduced-order model of the optimality system has to be found. The methods discussed include versions of proper orthogonal decomposition (POD) adapted to PDE constrained optimization as well as system-theoretic methods.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-13T13:47:51Z</dc:date> <dc:contributor>Sachs, Ekkehard</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32552"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-13T13:47:51Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Model Order Reduction for PDE Constrained Optimization</dcterms:title> <dc:creator>Benner, Peter</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Sachs, Ekkehard</dc:creator> </rdf:Description> </rdf:RDF>