Publikation:

A course in real algebraic geometry : positivity and sums of squares

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

978-3-031-69212-3
Bibliografische Daten

Verlag

Cham: Springer

Schriftenreihe

Graduate Texts in Mathematics (GTM); 303

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Monographie
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This textbook is designed for a one-year graduate course in real algebraic geometry, with a particular focus on positivity and sums of squares of polynomials.

The first half of the book features a thorough introduction to ordered fields and real closed fields, including the Tarski–Seidenberg projection theorem and transfer principle. Classical results such as Artin's solution to Hilbert's 17th problem and Hilbert's theorems on sums of squares of polynomials are presented in detail. Other features include careful introductions to the real spectrum and to the geometry of semialgebraic sets. The second part studies Archimedean positivstellensätze in great detail and in various settings, together with important applications. The techniques and results presented here are fundamental to contemporary approaches to polynomial optimization. Important results on sums of squares on projective varieties are covered as well. The last part highlights applications to semidefinite programming and polynomial optimization, including recent research on semidefinite representation of convex sets.

Written by a leading expert and based on courses taught for several years, the book assumes familiarity with the basics of commutative algebra and algebraic varieties, as can be covered in a one-semester first course. Over 350 exercises, of all levels of difficulty, are included in the book.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

textbook on real algebraic geometry, positive polynomials, sums of squares, semidefinite programming, polynomial optimization, spectrahedra, spectrahedral shadows, positivstellensätze, positivstellensatz, real spectrum, semialgebraic geometry

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHEIDERER, Claus, 2024. A course in real algebraic geometry : positivity and sums of squares. Cham: Springer. ISBN 978-3-031-69212-3
BibTex
@book{Scheiderer2024cours-71228,
  year={2024},
  doi={10.1007/978-3-031-69213-0},
  isbn={978-3-031-69212-3},
  publisher={Springer},
  address={Cham},
  series={Graduate Texts in Mathematics (GTM)},
  title={A course in real algebraic geometry : positivity and sums of squares},
  number={303},
  author={Scheiderer, Claus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71228">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Scheiderer, Claus</dc:creator>
    <dc:publisher>Springer</dc:publisher>
    <dc:publisher>Cham</dc:publisher>
    <bibo:issn>978-3-031-69212-3</bibo:issn>
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71228"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2024</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-12T08:33:58Z</dc:date>
    <dcterms:abstract>This textbook is designed for a one-year graduate course in real algebraic geometry, with a particular focus on positivity and sums of squares of polynomials.

The first half of the book features a thorough introduction to ordered fields and real closed fields, including the Tarski–Seidenberg projection theorem and transfer principle. Classical results such as Artin's solution to Hilbert's 17th problem and Hilbert's theorems on sums of squares of polynomials are presented in detail. Other features include careful introductions to the real spectrum and to the geometry of semialgebraic sets. The second part studies Archimedean positivstellensätze in great detail and in various settings, together with important applications. The techniques and results presented here are fundamental to contemporary approaches to polynomial optimization. Important results on sums of squares on projective varieties are covered as well. The last part highlights applications to semidefinite programming and polynomial optimization, including recent research on semidefinite representation of convex sets.

Written by a leading expert and based on courses taught for several years, the book assumes familiarity with the basics of commutative algebra and algebraic varieties, as can be covered in a one-semester first course. Over 350 exercises, of all levels of difficulty, are included in the book.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-12T08:33:58Z</dcterms:available>
    <dcterms:title>A course in real algebraic geometry : positivity and sums of squares</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen