Publikation: Second-order topological modes in two-dimensional continuous media
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a symmetry-based scheme to create 0D second-order topological modes in continuous 2D systems. We show that a metamaterial with p6m-symmetric pattern exhibits two Dirac cones, which can be gapped in two distinct ways by deforming the pattern. Combining the deformations in a single system then emulates the 2D Jackiw-Rossi model of a topological vortex, where 0D in-gap bound modes are guaranteed to exist. We exemplify our approach with simple hexagonal, Kagome and honeycomb lattices. We furthermore formulate a quantitative method to extract the topological properties from finite-element simulations, which facilitates further optimization of the bound mode characteristics. Our scheme enables the realization of second-order topology in a wide range of experimental systems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KOŠATA, Jan, Oded ZILBERBERG, 2021. Second-order topological modes in two-dimensional continuous media. In: Physical Review Research. American Physical Society (APS). 2021, 3(3), 032029. eISSN 2643-1564. Available under: doi: 10.1103/PhysRevResearch.3.L032029BibTex
@article{Kosata2021-03-09T12:54:05ZSecon-58459, year={2021}, doi={10.1103/PhysRevResearch.3.L032029}, title={Second-order topological modes in two-dimensional continuous media}, number={3}, volume={3}, journal={Physical Review Research}, author={Košata, Jan and Zilberberg, Oded}, note={Article Number: 032029} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58459"> <dc:contributor>Košata, Jan</dc:contributor> <dc:contributor>Zilberberg, Oded</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-31T13:41:58Z</dcterms:available> <dc:creator>Košata, Jan</dc:creator> <dcterms:issued>2021-03-09T12:54:05Z</dcterms:issued> <dcterms:title>Second-order topological modes in two-dimensional continuous media</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58459/1/Kosata_2-1qgmbr2yy1qfn4.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58459"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58459/1/Kosata_2-1qgmbr2yy1qfn4.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-31T13:41:58Z</dc:date> <dc:creator>Zilberberg, Oded</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:abstract xml:lang="eng">We present a symmetry-based scheme to create 0D second-order topological modes in continuous 2D systems. We show that a metamaterial with p6m-symmetric pattern exhibits two Dirac cones, which can be gapped in two distinct ways by deforming the pattern. Combining the deformations in a single system then emulates the 2D Jackiw-Rossi model of a topological vortex, where 0D in-gap bound modes are guaranteed to exist. We exemplify our approach with simple hexagonal, Kagome and honeycomb lattices. We furthermore formulate a quantitative method to extract the topological properties from finite-element simulations, which facilitates further optimization of the bound mode characteristics. Our scheme enables the realization of second-order topology in a wide range of experimental systems.</dcterms:abstract> </rdf:Description> </rdf:RDF>