Publikation:

Computational assessment of the potential of cross-catalytic coprecipitating systems for the bottom-up design of nanocomposites

Lade...
Vorschaubild

Dateien

Rouillard_2-1qaa1l7m83hz01.pdf
Rouillard_2-1qaa1l7m83hz01.pdfGröße: 1.27 MBDownloads: 6

Datum

2023

Autor:innen

Rouillard, Joti
García-Ruiz, Juan-Manuel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): CO 194/28-1
National Natural Science Foundation of China: 42173083

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Nanoscale Advances. Royal Society of Chemistry (RSC). 2023, 5(23), pp. 6148-6154. eISSN 2516-0230. Available under: doi: 10.1039/d3na00271c

Zusammenfassung

The production of nanocomposites is often economically and environmentally costly. Silica-witherite biomorphs, known for producing a wealth of life-like shapes, are nanocomposites entirely formed through self-organization processes. Behind these precipitates are two precipitation reactions that catalyze each other. Using a simple computational approach, we show here that this type of chemical system – defined here as Cross-Catalytic Coprecipitating Systems (CCCSs) – is of great interest to material design. Provided that cross-catalytic effects are sufficient to overcome the precipitation thresholds for each phase, all CCCSs can be expected to self-organize into nanocomposite materials through a one-pot, one-step synthesis protocol. Symmetry-breaking events generating various complex, ordered textures are predicted in CCCSs involving crystalline phases. While high levels of stochasticity lead to a loss of ordering, coprecipitation is found to be robust to diffusion or advection in the solution. This model shows that a couple of chemical reactions can generate a range of complex textures – with possibly distinct physical/chemical properties. Cross-catalytic coprecipitating systems consequently represent a promising avenue for producing nanocomposites with complex textures at reduced economic and environmental costs.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ROUILLARD, Joti, Britta MAIER, Helmut CÖLFEN, Juan-Manuel GARCÍA-RUIZ, 2023. Computational assessment of the potential of cross-catalytic coprecipitating systems for the bottom-up design of nanocomposites. In: Nanoscale Advances. Royal Society of Chemistry (RSC). 2023, 5(23), pp. 6148-6154. eISSN 2516-0230. Available under: doi: 10.1039/d3na00271c
BibTex
@article{Rouillard2023Compu-68209,
  year={2023},
  doi={10.1039/d3na00271c},
  title={Computational assessment of the potential of cross-catalytic coprecipitating systems for the bottom-up design of nanocomposites},
  number={23},
  volume={5},
  journal={Nanoscale Advances},
  pages={6148--6154},
  author={Rouillard, Joti and Maier, Britta and Cölfen, Helmut and García-Ruiz, Juan-Manuel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68209">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-16T11:09:41Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-16T11:09:41Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Maier, Britta</dc:contributor>
    <dc:creator>García-Ruiz, Juan-Manuel</dc:creator>
    <dc:contributor>Rouillard, Joti</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2023</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68209/1/Rouillard_2-1qaa1l7m83hz01.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68209"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68209/1/Rouillard_2-1qaa1l7m83hz01.pdf"/>
    <dcterms:title>Computational assessment of the potential of cross-catalytic coprecipitating systems for the bottom-up design of nanocomposites</dcterms:title>
    <dc:contributor>Cölfen, Helmut</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/3.0/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>García-Ruiz, Juan-Manuel</dc:contributor>
    <dc:creator>Maier, Britta</dc:creator>
    <dc:rights>Attribution-NonCommercial 3.0 Unported</dc:rights>
    <dcterms:abstract>The production of nanocomposites is often economically and environmentally costly. Silica-witherite biomorphs, known for producing a wealth of life-like shapes, are nanocomposites entirely formed through self-organization processes. Behind these precipitates are two precipitation reactions that catalyze each other. Using a simple computational approach, we show here that this type of chemical system – defined here as Cross-Catalytic Coprecipitating Systems (CCCSs) – is of great interest to material design. Provided that cross-catalytic effects are sufficient to overcome the precipitation thresholds for each phase, all CCCSs can be expected to self-organize into nanocomposite materials through a one-pot, one-step synthesis protocol. Symmetry-breaking events generating various complex, ordered textures are predicted in CCCSs involving crystalline phases. While high levels of stochasticity lead to a loss of ordering, coprecipitation is found to be robust to diffusion or advection in the solution. This model shows that a couple of chemical reactions can generate a range of complex textures – with possibly distinct physical/chemical properties. Cross-catalytic coprecipitating systems consequently represent a promising avenue for producing nanocomposites with complex textures at reduced economic and environmental costs.</dcterms:abstract>
    <dc:creator>Rouillard, Joti</dc:creator>
    <dc:creator>Cölfen, Helmut</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen